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Abstract

Instance segmentation is a valuable preprocessing step for many analysis workflows
of microscope image data. New deep learning based methods have surpassed classical
methods. However, they often require a large amount of labeled training data and deep
knowledge about the model. Therefore, they are more complicated to apply to new data.

This thesis investigates approaches to surpass these drawbacks. Initializing new
models with pretrained weights for transfer learning is a promising technique to reduce
the amount of required training data. Therefore, the applicability of transfer learning
on microscope images is evaluated. The evaluation shows that transfer learning can
improve the performance of models with only a few training examples and reduce the
training time drastically. However, the choice of the pretraining dataset is crucial. The
pretraining dataset needs to be diverse but related to the target dataset.

Additionally, this thesis introduces a deep learning segmentation framework within
KNIME Analytics Platform to address the drawback of required expert knowledge. The
framework hides most of the complexity for non-computer-scientists and makes it easy to
use state-of-the-art models for instance segmentation. At the same time, the framework
is easily extensible by more experienced users. The developed framework can handle large
images by applying deep learning models on tiles of the image, reducing the required
memory.
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Chapter 1

Introduction

Today, modern microscopes can quickly produce a vast amount of image data from one or
multiple experiments [Eco+16; Hui04; Kel+11; Ste+14]. The images have to be analyzed
to draw conclusions from the experiments. Manual analysis can be time-consuming,
tedious, and often does not yield convincing evidence because the scientist might have
introduced a bias towards his assumptions [Wik19a]. Not to mention, that often the
amount of data is just too large to be analyzed manually. Therefore an automatic
analysis is desired. Using image analysis tools to process the data, scientists can produce
reliable numeric results that proof (or disproof) their hypothesis and build a reproducible
analysis pipeline which can be reused by other scientists.

One crucial preprocessing step for many automatic analysis pipelines is instance
segmentation (in particular cell segmentation [Mei12]) that assigns each pixel of an image
a class label and an instance id. The resulting segmentation can be used for further
analysis, like intensity and shape measurements [BHL15; DB16] and tracking [Mei+09].

Recently, deep learning based methods for instance segmentation have emerged.
Some methods have been introduced for natural images [He+17; HHS17] but can also
be used on microscope images. Others have been introduced specifically for microscopic
image analysis [RFB15; Sch+18]. StarDist [Sch+18] is a recent method that proved to
be very powerful for segmenting objects with roundish shapes and will be the primary
method used in this thesis. These methods can be used to segment datasets that are too
difficult for traditional approaches.

However, there are downsides to these deep learning based methods. Firstly, they
usually require an expert to build, train, and run a model for a specific experiment.
Many methods require programming knowledge and a deep understanding of the model
to use them. If the method should be part of an entire analysis pipeline, either the
complete analysis requires programming knowledge, or the results must be transferred
to another tool to do the other parts of the analysis. Using multiple tools in one analysis
pipeline adds complexity to the pipeline and makes it harder to rerun it, change it, and
to ensure its reproducibility. Deep learning based segmentation methods would be more
useful if they were integrated into the tools that are already used for the analysis. They
should be integrated in such a way that they can be used without in-depth knowledge
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2 CHAPTER 1. INTRODUCTION

about the method itself.
Secondly, deep learning based methods usually require many labeled training ex-

amples to achieve good performance. Acquiring labeled data is often cumbersome and
labor-intensive. Reducing the amount of data that is needed to train a deep learning
model would make it more useful.

Contributions This work addresses the two downsides mentioned above of deep learn-
ing based methods. Transfer learning is a simple approach to reduce the amount of
required training data. Therefore, the applicability of transfer learning to microscopy
images is evaluated. Different scenarios with pretraining on simulated images, real mi-
croscope images, and real natural images are analyzed and discussed.

A framework for segmentation in KNIME Analytics Platform is introduced to enable
non-experts to train and apply deep learning based segmentation methods. The frame-
work is easy to use, extensible, can be used for transfer learning, and can process large
images.

Additionally, the StarDist model is improved, to enable the segmentation of more
challenging datasets, by building the U-Net backbone with residual bottleneck blocks.
The proposed changes are evaluated and do improve the performance of the model on
complex datasets significantly.

Structure In Chapter 2, an introduction to the essential foundations is given. After-
ward, the related work is analyzed in Chapter 3. The StarDist [Sch+18] method and
the proposed improvement are described in Chapter 4. In Chapter 5, transfer learning is
evaluated to reduce the number of required training examples. The acquired insights are
applied in Chapter 6, where the KNIME Instance Segmentation framework is described.
A conclusion is drawn in Chapter 7.



Chapter 2

Foundations

2.1 Microscope Images

“Microscopy [. . .] has served as a fundamental scientific technique for centuries. Indeed,
for hundreds of years, it was arguably the only scientific method. It remains an invaluable
tool in biology and healthcare and has been integrated increasingly into modern chemical
instrumentation.” [BM09].

Automatic analysis of microscope image is now more critical than ever because mod-
ern microscopes can produce vast amounts of data [Eco+16; Hui04; Kel+11; Ste+14].
Before we focus on the important analysis task of instance segmentation, we will quickly
discuss the different types of microscopes and image acquisitions to gain a better under-
standing of the acquired images.

2.1.1 Types of Microscopes

Microscopes can be categorized based on what interacts with the sample to generate
the image. Light interacts with the sample for optical microscopy, electrons for electron
microscopy, or a probe for scanning probe microscopy [Wik19c].

Optical Microscopes For optical microscopy, the microscope observes the interaction
between light and the matter of the sample. There are different techniques of
how light interacts with the sample and what is perceived by the sensor. These
techniques apply to different kinds of samples and produce fundamentally different
images.
The most straightforward form of optical microscopy is bright field microscopy
where a sample gets illuminated from below, and the shadow of the sample is
observed [BM09] (see Figure 2.1a). Dark field microscopy illuminates the sample
such that light gets reflected from the sample [BM09]; phase contrast microscopy
observes the phase shift of the light transmitted through the sample [BM09]; in
differential interference contrast microscopy, the difference between two light beams
is observed. For fluorescence microscopy, the effect of fluorescence is used by

3



4 CHAPTER 2. FOUNDATIONS

(a) Microsporum audouinii
macroconidium in bright
field microscopy. Image
by R. Summerbell and J.
Scott [SS13].

(b) LLC-PK1 cells using flu-
orescence microscopy. Image
by ZEISS Microscopy from
Germany [ZEI15].

(c) Pollen from differ-
ent plants using electron
microscopy. Image by Dart-
mouth College Electron
Microscope Facility [Dar].

Figure 2.1: Images taken by different types of microscopes.

illuminating the sample with high energy light such that it starts emitting light of
longer wavelength [Wik19b] (see Figure 2.1b).
Diffraction limits the resolution of optical microscopy to around 250 nm [Wik19c].

Electron Microscopes To take higher resolution images than possible with light an
electron beam (shorter wavelength than light) is used in electron microscopy [Wik19c]
(see Figure 2.1c).

Scanning Probe Microscopes A physical probe that scans the surface of the sample
enables atomic-level resolution for scanning probe microscopy [Wik19c].

This work will focus on images of optical microscopy. The experiments use fluores-
cence images and bright field images.

2.1.2 Image Acquisition

Sensors identical (or similar) to those in conventional digital cameras a are used for the
image acquisition in microscopes [BM09]. The difference is that some microscopes can
capture 3-dimensional images and several channels that is not three. In fluorescence
microscopy, for example, there can be different stains (depending on the application)
which all produce one individual channel.

Therefore we formally define an image with an arbitrary number of dimensions and
channels:

Definition 2.1 (Image). An n-dimensional image f with c channels is a function which
maps from a domain Ω ⊂ Rn to a tuple of intensity value: f : Ω→ Rc.

In this work, we will use 2-dimensional images with one channel which are sampled
on integer coordinates. Therefore we will use f : Ω ⊂ Z2 → R from now on.
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(a) Kittens (b) Semantic segmentation (c) Instance segmentation

Figure 2.2: Semantic segmentation and instance segmentation of kittens. (Image by
“axelle b” [axe])

2.2 Instance Segmentation

A critical preprocessing step that allows for different kinds of automated analyses of
microscopy image data is instance segmentation. An instance segmentation helps to
locate various objects in an image and separate different instances of the same object.

Before we define an instance segmentation, we will define a general segmentation of
an image.

Definition 2.2 (Segmentation). If L is a set of labels, a segmentation sf : Ω → L of
an image f : Ω→ Rc assigns each point in the image a label that describes the point in
the original image f .

The definition of segmentation does not define what the labels are. Neither does
it define how to decide if a point in an image belongs to a specific label. There are
two main options for choosing labels. The first option is to use semantic classes of the
content of the image.

Definition 2.3 (Semantic Segmentation). A semantic segmentation is a segmentation
where the labels L describe the class of the point in the image.

Note that in a semantic segmentation the same label is assigned to different objects
of the same class.

The second option is to use the class and object instance.

Definition 2.4 (Instance Segmentation). An instance segmentation is a segmentation
where the labels L describe the class and the object instance of a point in the image.

Figure 2.2 shows the difference between a semantic segmentation and an instance
segmentation.

In this work, we will focus on instance segmentation with the only classes being
foreground and background (We will use the term segmentation for them). Therefore
our segmentations will have the labels L ⊂ N where 0 is used for background points, and
all other numbers identify instances of foreground objects.
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Applications An instance segmentation of cells can be used to extract statistics about
the cells like size and shape or texture. They allow researchers to compare cells against
each other (e.g., after some cells had been treated with a potential active substance).
The extracted values can be evaluated yielding statistically significant statements.

Another application where an instance segmentation is a valuable preprocessing step
is tracking. An instance segmentation can be used to track cells through images and
detect divisions [Ren+15; Ulm+17] which results in a developmental lineage tree of the
organism. The lineage tree and the tracking result are valuable information for biologists
to understand how cell tissues develop into complex organisms. Note, that one can also
omit the pixel segmentation and do tracking by detection (using the center points of
each segment). However, the segmentation might contain valuable information that
could improve the tracking. For example, the size or shape of objects is often not likely
to change between frames.

2.3 Deep Learning

Many recent methods for segmentation make use of deep learning [He+17; RFB15;
Sch+18]. Deep convolutional networks have been used for many computer vision tasks
like image classification [KSH12; SZ15; He+16] and object detection [Ser+14; Gir+14;
Red+16]. This section will briefly introduce the basic building blocks of deep neural
networks.

2.3.1 Multilayer Perceptron

Perceptrons are the basis of each neural network. Perceptrons are units that have n
inputs x = (x1, . . . , xn)T and one output. The parameters of a perceptron are a weight
vector w = (w1, . . . , wn)T and a bias value b. The output of a perceptron is computed
by applying an activation function to wT x + b. The activation function of a perceptron
is a step function and 1 if wT x + b larger than 0 and 0 else.

Multiple perceptrons can be combined in a feed-forward fashion (the inputs of lay-
ers of perceptrons are only connected to the outputs of the previous layer) to form a
multilayer perceptron. A multilayer perceptron can be optimized for some data via the
Backpropagation Algorithm which computes the derivative of a loss function for each
weight. However, it is only possible to compute the derivative for each weight if the
activation functions of the perceptrons are differentiable. The step function that is used
for a single perceptron is not differentiable, and another function has to be used. We also
call a perceptron with an arbitrary activation function a neuron. An activation function
that can be used is the sigmoid function f(x) = 1/(1 + e−x), which is an S-like curve
between 0 and 1. The ReLU [NH10] function f(x) = x if x > 0 and f(x) = 0 else is not
differentiable at every point but still has been proven to be a good activation function
for multilayer perceptrons. The model parameters can be optimized using statistical
gradient descent or another optimizer like Adam [KB15].
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Note that a multilayer perceptron is just a feed-forward neural network. There are
also recurrent neural networks that will not be covered in this thesis.

2.3.2 Deep Neural Networks

Convolutional Neural Networks

Connecting all pixels of an image to some neurons would result in many weights that
have to be learned. Additionally, if visual entities would move slightly in an image,
they would not be recognized anymore. Convolutional neural networks have been pro-
posed [LeC+99] to tackle this issue. In convolutional neural networks, some layers of
neurons are replaced by convolutions with learned kernels. Note, that this is just a lim-
itation on fully-connected layers by sharing weights and setting many weights to zero.
Convolutional layers can learn useful features on images with far fewer parameters and
are shift-invariant.

Sub-sampling layers are used between convolutional layers to reduce the size of the
image. A usual sub-sampling strategy is max-pooling which only selects the maximum
values of a block of values.

Residual Learning

Increasing the number of layers of neural networks improves the accuracy up to a point
where it starts to degrade rapidly [He+16]. The accuracy does not degrade because of
overfitting, but because the deep models are not as easy to optimize.

Residual learning [He+16] was introduced to solve this problem. A residual building
block adds a skip connection that goes around some stacked layers. The input of the
layers is added to the output of the layers. This way, if the output of the stacked layer
is zero, the whole block maps to the identity. Therefore it is easy for a residual block
to learn mappings that are close to the identity mapping. It was shown that this helps
with the optimization of very deep neural networks [He+16].

2.4 Transfer Learning

It is much easier for a human to learn driving a truck if he learns how to drive a car
beforehand. He will automatically make use of the knowledge of the task of driving a
car and transfer it to the more complex task of how to drive a truck. Humans use this
kind of transfer learning daily, but machine learning models are usually trained from
scratch [Zha+19].

Transfer learning means adapting knowledge from one task to another task. The idea
is that a model can reuse knowledge from the first task to easier learn how to solve the
second task. This is only the case if some knowledge from the first task applies to the
second task. If knowledge can be reused, the model might be able to learn the second
task quicker and with less training examples.
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For many tasks, there is not enough labeled data to train a model from scratch and
manually labeling enough data is tedious, labor-intensive, and error-prone. On the other
hand, it is likely that a dataset with a sufficient amount of data that is similar to the
desired data exists. Transfer learning can be used to transfer learned knowledge from
a model trained on the large dataset to the smaller dataset. This can enable training
models without the need to label much data.

When transfer learning a model, the domain (kind and distribution of input data),
the task (assignment of output labels), or both can change from the source to the target.

Definition 2.5 (Domain [PY10]). A domain D consists of a feature space X and a
probability distribution P (x) with x ∈ X .

Definition 2.6 (Task [PY10]). Given a domain, D = (X , P (x)), a task T consists of a
label space Y and an objective function f : X → Y.

Definition 2.7 (Transfer Learning). Given a source domain DS and task TS and a
target domain DT and task TT , transfer learning aims to improve a model on the target
task TT using knowledge of the source task TS.

2.4.1 Deep Transfer Learning

The usual approach to do transfer learning of deep neural networks is to train a model
for the source task and copy weights from this source model to the target model. These
weights are expected to compute valuable features also on the data of the target task.
One has to decide which weights should be copied and how the target model should look
like.

The two usual approaches are to copy most of the weights and fine-tune them on
the target task or to apply a new model (logistic regression, SVM) to some high-level
features of the source model.

Model on high-level features Training a new model to some high-level features (ac-
tivations of a late layer) of the source model can allow creating a model for the
target task very quickly. The resulting target model consists of the first part of
the source model where the weights will not be adapted, and the new model on
the high-level features. See model MT2 in Figure 2.3.
For this option, one has to decide which layer the activations should be taken from.
Usually, one of the last layers will be used because a less powerful model on top of
the activations will only be able to model easy relationships.
This option is relatively cheap because the new model is usually much easier to
train than a full deep learning model. Also, if the new model does have a lower
capacity, it will not overfit on small datasets.

Fine-tuning For fine-tuning, the same model as for the source task will be used, but
the weights up to a certain layer will be initialized with the corresponding weights
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MT2 MT3

θ1 θ2 θ3 θ4 θ1 θ2 θ3

θ1 θ2 θ3

θ4

MS MT1

θ1 θ2 θ3 θ4

Figure 2.3: Illustration of how weights of deep learning models can be reused in other
models for transfer learning. The weights of the source model MS are marked blue while
random weights are marked orange. The transferred weights can be fine-tuned (marked
by an open lock) or fixed (marked by a closed lock) during the training of the target
model.

of the source model. During the training, all parameters of the target model will
be optimized. See model MT1 in Figure 2.3.
Before fine-tuning a model, one has to decide which weights of the source model
should be copied. Intuitively, it makes sense to copy all weights up to a particular
layer. A layer with random weights before layers with pretrained weights could
undo the knowledge of the pretrained layer because it computes features that can
not be handled by the next layer. The next layer will adapt.
As shown by Yosinski et al. [Yos+14], it makes sense to copy the weights up to
one of the last layers of the model because the weights that need to adapt to the
new task will still adapt and copying the weights improves generalization.
This option is more expensive because the whole deep learning model has to be
trained. On the other hand, all layers of the model can adapt to the new dataset
and task, which makes this option more powerful.

Combinations It is possible to combine the approaches to create a target model were
some of the weights get copied and fixed, some of the weights get copied and
fine-tuned and parts of the model change. See model MT3 in Figure 2.3 for an
example.

Other methods for deep transfer learning have been proposed in the literature and
will be discussed in Section 3.2.





Chapter 3

Related Work

This chapter lists the related work. Section 3.1 describes other work that is related to
the segmentation of microscope images. In Section 3.2, work about transfer learning is
analyzed. Finally, in Section 3.3 work to deploy deep learning methods is listed.

3.1 Segmentation

A segmentation assigns each pixel of an image a label. For cell segmentation, a common
technique is first to obtain a foreground-background segmentation by thresholding the
image values (e.g., [Ots79]) and then find connected foreground components. Meijer-
ing [Mei12] describes the standard techniques for cell segmentation. He finds that the
standard approaches are intensity thresholding, feature detection, morphological filter-
ing, region accumulation, and deformable model fitting. RACE [Ste+16], for example,
is a framework for 3D cell segmentation that uses a hand-crafted segmentation pipeline.

Deep learning can be used to segment more complex images. Many methods have
been proposed for semantic segmentation and instance segmentation of natural images.
Hariharan et al. [Har+14] propose a method for simultaneous detection and segmenta-
tion that consists of four steps. They generate region proposals using MCG [Arb+14],
use a CNN for feature extraction, classify the regions using an SVM, and finally refine
the regions. Fully convolutional networks were introduced by Long and Shelhamer et
al. [LSD15]. They proposed a model architecture for semantic segmentation that com-
bines coarse, high layer information with fine, low layer information. This way, they
can predict an accurate segmentation map. He et al. [He+17] introduced Mask R-CNN,
which adds a branch to Faster R-CNN [Ren+15] that predicts an object mask to obtain
an instance segmentation. They achieve outstanding results on the COCO [Lin+14]
dataset and show that their method can also be used for other tasks like human pose
estimation.

These methods can be used for segmentation of microscope images, but there are
deep learning methods that have been introduced especially for segmenting these images.
Ronneberger et al. [RFB15] introduced U-Nets for biomedical image segmentation. U-
Nets have a novel architecture with long skip connections to recover fine details of the

11
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image during the upsampling of the decoder network. They also introduce a weighted
loss to separate touching objects and evaluate their architecture on two microscopy
datasets. Most winning solutions of the 2018 Data Science Bowl use modified U-Nets1.
Section 4.1 describes the U-Net architecture in more detail.

StarDist [Sch+18] is an advanced deep learning based method for instance segmen-
tation that specializes in objects with roundish shapes. A StarDist model is based
on a U-Net backbone but predicts star-shaped polygons that describe the objects.
Therefore, StarDist is very powerful for images of crowded cells. They show that
StarDist performs better than U-Nets and Mask R-CNN on a nuclei instance segmen-
tation dataset. StarDist is the preferred method throughout the thesis, and Section 4.2
describes StarDist in more detail.

3.2 Transfer Learning

Transfer learning is a great approach to enable the training of powerful machine learning
models on relatively small datasets.

Especially in computer vision, transfer learning has found a wide adaption. Many
deep learning models are pretrained on ImageNet [Rus+15]. In 2014 Oquab et
al. [Oqu+14] observed that image representations by CNNs that have been learned
image classification on ImageNet could be used for object detection. They do not
even fine-tune the convolutional layers trained on ImageNet but only add two fully
connected layers to adapt. R-CNN [Gir+14] is a method that uses a CNN for feature
extraction of proposed regions to do object detection. They pretrain the CNN on the
ImageNet dataset. Redmon et al. [Red+16] presented a fast one-stage object detector
called YOLO. They divide the image into a grid and predict bounding boxes and
class probabilities for each grid cell. Their backbone network architecture is inspired
by GoogLeNet [Sze+15] and pretrained on ImageNet. Lin et al. [Lin+17b] proposed
a novel loss for object detection that focuses on hard examples during the training of
a one-stage detector. As a backbone, they use a Feature Pyramid Network [Lin+17a]
with a ResNet [He+16] encoder that was pretrained on ImageNet. The backbone used
in Mask R-CNN (which has been described above) was also pretrained on ImageNet.

Despite the high usage of transfer learning in computer vision tasks, there is not
much work on evaluating pretraining. He et al. [HGD18] discovered that ImageNet
pretraining is not necessary to get state of the art results on the COCO dataset. They
show that pretraining on ImageNet does not improve the final score on COCO if the
model with random initialization is trained long enough. Yosinski et al. [Yos+14] had
other results with an example based on ImageNet subsets. They had better classification
scores for models that were trained to predict 500 classes of the ImageNet dataset if they
were pretrained on the other 500 classes beforehand. On the other hand, they observed
performance degradation if the tasks were less similar.

1First place: https://www.kaggle.com/c/data-science-bowl-2018/discussion/54741
Second place: https://github.com/jacobkie/2018DSB
Fourth place: https://www.kaggle.com/c/data-science-bowl-2018/discussion/55118

https://www.kaggle.com/c/data-science-bowl-2018/discussion/54741
https://github.com/jacobkie/2018DSB
https://www.kaggle.com/c/data-science-bowl-2018/discussion/55118
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Other research on transfer learning was done by Kornblith et al. [KSL19] who ex-
plored if better ImageNet models do transfer better. They observe a strong positive
correlation between the ImageNet accuracy and the transfer learning accuracy of models
on multiple datasets. However, all their datasets contain only natural images.

In the processing of microscope images transfer learning has been used less. Falk et
al. [Fal+18] provided U-Nets for transfer learning using an ImageJ Plugin, but they did
not evaluate how the choice of the pretraining dataset affects the transfer learning perfor-
mance. Oliveira et al. [OS18] proposed a transfer learning technique for chest radiographs
that makes use of unsupervised image-to-image networks (like CycleGAN [Zhu+17],
UNIT [LBK17], MUNIT [Hua+18]) to map images from the target domain to the source
domain. The observed that their semi-supervised transfer worked better than fine-tuning
on their chest radiographs.

For natural images, there is more work on how to improve transfer learning. Ngiam
et al. [Ngi+18] weighted the loss during the pretraining on the model on specific samples
of the source dataset such that the pretraining focuses on samples that are important
for the target task. They find that the choice of pretraining data is more important than
the size of the pretraining dataset. Therefore, their findings fit the conclusion of this
thesis. Rozantsev et al. [RSF19] trained two models on the target and the source dataset
simultaneously while forcing the weights of both models to be related. They introduce
a weight regularizer that penalizes weights that are not a linear transformation of each
other. This allows modeling a domain shift between the source and the target data.

3.3 Deep Learning Deployment
Fiji [Sch+12] is one of the most used tools from microscopic image analysis. The base of
Fiji is ImageJ [SRE12] and ImageJ2 [Rue+17]. KNIME Image Processing [DB16] is built
upon ImageJ2 and provides most of the functionality. Additionally, KNIME Analytics
Platform [Ber+09] can be used to analyze the results of the analysis further.

Some efforts have been made to make deep learning based methods with microscope
image analysis available in these tools. Weigert et al. [Wei+18] developed an ImageJ2
plugin to apply deep learning models in Fiji. They also released KNIME workflows to
apply the same models. However, the training of the models needs to be done manually
using a Python package. Falk et al. [Fal+18] provided an ImageJ plugin to apply and
fine-tune U-Nets. Their tool is easy to use within Fiji and therefore integrates well into
an image analysis pipeline for microscopy images. However, the plugin is not easily
extensible to other methods (like StarDist) and does not provide the functionality to
train models from scratch. The user has to fine-tune one of the provided models.

KNIME already provides a toolkit for deep learning2 but using it to apply and
train more complex deep learning models on microscope images is not straight forward.
Therefore, this work adds another abstraction layer on top of this toolkit to make it
easier to use.

2https://www.knime.com/deeplearning

https://www.knime.com/deeplearning




Chapter 4

Method

In this chapter, the U-Net model architecture is described (Section 4.1). Based on this
architecture, the StarDist model is explained (Section 4.2). Finally, a modification of the
U-Net architecture based on residual shortcut connections is proposed, which improves
the performance of StarDist models (Section 4.3).

4.1 U-Net

To obtain an instance segmentation, one can first compute a foreground-background
segmentation and then find connected foreground components. If simple thresholding of
the intensity values (e.g., Otsu [Ots79]) does not suffice, one can use more sophisticated
methods to arrive at the foreground-background segmentation which will be used by the
Connected-Component Labeling.

A U-Net is a deep convolutional neural network that was introduced for image seg-
mentation [RFB15]. It is easy to train a U-Net to output 1 for foreground pixels and
0 for background pixels based on a ground truth segmentation. This U-Net can then
be used to create a segmentation of the image which can be turned into an instance
segmentation by a Connected-Component Labeling.

If the objects are crowded, the Connected-Component Labeling will assign the same
label to different objects that are touching each other. In this case, a U-Net can be
trained to predict three classes: foreground, background, and border (the boundary of
one object) [Sch+18]. The border class will separate objects during the Connected-
Component Labeling of the foreground class.

Alternatively, the objects can be separated with the background class and a weighted
loss. Giving the pixel that are close to the border of multiple objects a higher loss during
training will force the model to separate the objects [RFB15].

4.1.1 Architecture

A U-Net is built on the architecture of fully convolutional networks [LSD15]. The first
part of the network successively reduces the spatial resolution of the image while increas-
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Conv 3× 3 + ReLU
Max-pool
Upsample
Copy
Conv 1× 1 + Softmax

Figure 4.1: The architecture of a U-Net model. Each box corresponds to a three-
dimensional tensor with spatial dimensions corresponding to the height of the box and
the number of feature maps corresponding to the width of the box. Lightly filled boxes
correspond to a copied tensor.

ing the number of feature maps (like backbones of many common architectures [KSH12;
SZ15; He+16]).

To predict a segmentation map, the second part of the network increases the res-
olution again. This part differs from the architecture of fully convolutional networks
because the upsampling is done successively (like the downsampling) using upsampling
layers instead of pooling layers. To better localize features during the upsampling (the
exact localization gets lost because of the pooling layers) feature maps from the down-
sampling part are concatenated with the upsampled feature maps (see Figure 4.1).

All operations of a U-Net require only a local input region. This means, that any
U-Net can be applied to arbitrary image sizes (only limited by the GPU memory).

The architecture used in this work is slightly different from the architecture in the
original paper. Padded convolutions instead of unpadded convolutions were used, and
the 2×2 convolutional layer after the upsampling was omitted, but the number of feature
maps was reduced during the second convolutional layer of each size.

4.1.2 Training

A U-Net can be trained using training images and their corresponding ground truth
segmentation. A pixel-wise soft-max computes the output probabilities, and the loss is
a cross-entropy loss function per pixel.

The original paper [RFB15] used stochastic gradient descent with a batch size of only
one image but high-resolution input images. A high momentum counteracted the train-
ing instabilities that could be caused by the small batch size. The training configuration
used in this work is described in Section 5.3.

A weight map which increases the loss for pixels that are close to two or more objects
was used by the authors of the U-Net paper [RFB15]. This forces the model to learn
the separation border between objects.

In the KNIME Implementation the weight map was not used. Instead, a border class
was used to separate the object in the 3-class U-Net model.
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(a) Input (b) di,j (c) rk
i,j

Figure 4.2: Input and outputs of a StarDist model for an image of two cells.

4.2 StarDist

StarDist is a cell detection method that predicts a star-shaped polygon for each object
describing the object’s shape [Sch+18]. This polygon can be used directly to obtain an
instance segmentation of the object. As we will see in Chapter 5 this instance segmen-
tation is not perfect but can compete with other methods.

The foundation of the StarDist method is a convolutional neural network (CNN)
that takes the normalized image as input and predicts a star-shaped polygon and a
score for each pixel. On these polygon proposals, a score threshold and a non-maximum
suppression (NMS) is applied to filter out false predictions.

4.2.1 Architecture

The StarDist model uses the network architecture of a U-Net (which is described in
Section 4.1.1), but does not output a segmentation directly but the object scores di,j ,
and a map of polygon-rays rk

i,j .
The di,j output is trained to predict the normalized Euclidean distance to the back-

ground. This value is 0 for background pixels, 1 for the most centered pixel of an object,
small for pixels close to the object boundary and large for pixels close to the object
center. The rk

i,j output is trained to predict the length of rays from the pixel to the
object boundary in n directions defining the polygon. Together the outputs yield one
polygon proposal per pixel and its score (see Figure 4.2).

The polygon proposals are filtered by a score threshold and a non-maximum sup-
pression to filter out false predictions and get only one polygon per object. The non-
maximum suppression will prefer polygons whose center are close to the center of the
object because of the trained score output (which is larger close to the center of an
object). These polygons can capture the shape of the object better.

4.2.2 Training

During the training, a binary cross-entropy loss is optimized for the score outputs. The
ray output is optimized using the mean absolute error weighted by the ground truth
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score. This assures that no polygon has to be learned for background pixels where the
score is zero. The model focuses on polygons close to the center of the object, which are
favored by the non-maximum suppression.

4.2.3 Advantages

No merging of touching objects: Methods that first obtain a foreground-background
segmentation and then find the instances by a Connected-Component Labeling are
prone to merge cells that are close to each other. This is not an issue for StarDist
because the model predicts shapes and instances in one go. The model is trained
to detect centers of object instances and predict the distance to the object border,
which is also valid for very crowded objects.

No suppression of crowded object: Methods that predict an object proposal by a
bounding box like Mask R-CNN are prone to suppress objects that are close to
each other and whose bounding boxes have a large overlap even if the objects itself
do not overlap. StarDist does not have this issue because the NMS is applied to
the shape proposals that represent the actual object shape much better than a
bounding box and do not overlap much for crowded objects.

Relatively few parameters: Compared to Mask R-CNN StarDist has much fewer
parameters and is, therefore, easier to train with less training data. StarDist has
about 1.4 million parameters, while Mask R-CNN has about 45 million parameters.

4.3 Res-U-Net
The U-Net backbone limits the modeling capacity of a StarDist model. The U-Net
backbone can be improved to increase the performance of a StarDist model. An intuitive
way to improve the model capacity is by adding more layers to the model. However,
adding more layers could also degrade the performance because it gets harder to optimize,
as mentioned in Section 2.3.2. This decrease could be prevented by using residuals.

4.3.1 Architecture

For the Res-U-Net backbone, the two convolutional layers on each resolution level are
replaced by residual blocks (see Figure 4.3). The first of the blocks always changes the
number of feature maps to the desired number of feature maps for this level (left block
in the figure). All subsequent blocks keep this number of feature maps (right block in
the figure).

For the proposed architecture, two blocks are used at each resolution level (up and
down) except for the second resolution level where three blocks are used. The numbers
of feature maps for each resolution level is 64, 128, 256, and 512, respectively. Note that
the 3× 3 convolutional layers have only 1/4 of the filters.

After each upsampling layer, a 2×2 convolution is applied, which halves the number
of features maps. This is different from the used U-Net where no 2× 2 convolution was
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Figure 4.3: The two bottleneck building blocks of the Res-U-Net. The left block can be
used with an arbitrary number of input features and can, therefore, be used to increase
or decrease the number of features. The shown block increases the number of features
from 64 to 128. The block on the right can only be used with a fixed number of input
features and outputs the same number of features. The 3× 3 convolution always has 1/4
of the filters of the output convolution which reduces the number of parameters.

used, and where the last convolution reduced the number of feature maps at the previous
resolution level.

The number of feature maps at each resolution level and the number of residual
blocks at each resolution level can be changed easily to construct models with more or
less modeling capacity. The described numbers were chosen because they improve the
modeling capacity and performance of the model while keeping it relatively small. With
the StarDist head applied to the proposed backbone, the model has slightly above 2
million trainable parameters.





Chapter 5

Experiments

In this chapter, the experiments to evaluate the applicability of transfer learning are de-
scribed and discussed. First, the datasets (Section 5.1), evaluation metric (Section 5.2),
and implementation details (Section 5.3) are described. Later, the motivation, descrip-
tion, and results of each experiment are listed and discussed (Section 5.10).

The general procedure for evaluating the transfer learning performance between a
source dataset A and a target dataset B can be split into four parts:

1. Train a model on dataset A

2. Train a model on dataset B

3. Train a model on dataset B with 2, 5, 10, 50 and 200 training examples

4. Retrain the model of dataset A on dataset B with 2, 5, 10, 50 and 200 training
examples

Most experiments use this procedure, and it will be called transfer performance
evaluation.

The experiments will use the StarDist model. StarDist especially makes sense for
instance segmentation on microscope images because it performs significantly better
than usual U-Nets or Mask R-CNN [Sch+18]. The advantages of StarDist are described
in Section 4.2.3.

5.1 Datasets

5.1.1 Simulating Microscopy

Obtaining ground-truth segmentations for real microscopic datasets is cumbersome if
possible at all. Therefore it makes sense to simulate realistic microscope images with
known ground truth segmentations to evaluate and pretrain models.

The tool CytoGen1 was used to simulate images of HL60 cell nuclei and granulocyte
nuclei.

1https://cbia.fi.muni.cz/research/simulations/cytogen.html
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The simulation of microscope images of cell nuclei consists of the three main
parts phantom generation, signal transmission, and signal detection and image for-
mation [SKS09].

Phantom generation During the phantom generation, a model of the object is cre-
ated. For microscopic simulations, many objects are too small to image them
correctly (or observe them by eye) such that one can learn how the object looks
like. Therefore, the model can only be built upon the expected appearance of the
object.

Signal transmission The signal transmission describes how the signal of the perfect
phantom is transmitted through an optical system to arrive at the imaging device.
The primary degradation of the signal is blurring that can be described by the point
spread function. Additionally, the light conditions might not be perfect (uneven
illumination), which can cause different signal intensities in different regions of the
image.

Image formation During the image formation, there are plenty of types of different
noise that is introduced by the sensor and the electronic system.

5.1.2 List of Datasets

Name Category Task Image Size #Images
(train /

test)

HL60_LOW_NOISE F Nuclei segmentation 484× 484 850 / 150
HL60_HIGH_NOISE F Nuclei segmentation 484× 484 850 / 150
GRANULOCYTE F Nuclei segmentation 484× 484 850 / 150
DSB2018 F & B Nuclei segmentation varying 664 / 106
STARDIST_DSB2018 F Nuclei segmentation varying 447 / 50
CITYSCAPES N Segmentation 2048× 1024 2975 / 500
IMAGENET N Classification varying 1.2 M / n/a

Table 5.1: List of experiment datasets. The category is denoted by F for fluorescence
microscopy, B for bright-field microscopy, and N for natural images.

HL60_LOW_NOISE

The HL60_LOW_NOISE dataset contains simulated fluorescence images of HL60 nuclei.
The simulation was done with the tool CytoGen. The configuration was very similar
to the example configuration released with the application. Changes were made in
the acquisition time and dynamic range usage of the acquisition device such that the
resulting images have low noise. Additionally, the image size was changed such that the
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(a) HL60_LOW_NOISE (b) HL60_HIGH_NOISE

(c) GRANULOCYTE

Figure 5.1: Example images and ground truth segmentations of the simulated datasets.

resulting images have a resolution of 484 × 484 and only one slice in the z-dimension.
Each image contains ten nuclei phantoms that are positioned randomly. See Figure 5.1a
for an example image.

HL60_HIGH_NOISE

The HL60_HIGH_NOISE dataset contains the same images as the HL60_LOW_NOISE dataset
but with more noise. The higher signal to noise ratio was accomplished by reducing the
acquisition time and dynamic range usage of the acquisition device. See Figure 5.1b for
an example image.

GRANULOCYTE

The GRANULOCYTE dataset contains simulated fluorescence images of granulocyte nuclei.
The simulation was done with the tool CytoGen. The configuration was very similar to
the example configuration released with the application. The image size was changed
such that the resulting images have a resolution of 484 × 484 and only one slice in the
z-dimension.

A granulocyte nucleus consists of multiple thick elliptical parts called lobes which
are connected by very thin channels that are not visible in the final images. The goal
for this dataset is to segment each lobe individually. A KNIME workflow was used to
disconnect the lobes in the ground truth segmentation and assign each lobe a unique
identifier. See Figure 5.1c for example images.
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Figure 5.2: Example images and ground truth segmentations of the DSB2018 dataset.

DSB2018

The DSB2018 dataset contains real fluorescence and bright field images from the Kaggle
competition 2018 Data Science Bowl2.

The competition website describes the dataset well.

This dataset contains a large number of segmented nuclei images. The
images were acquired under a variety of conditions and vary in the cell
type, magnification, and imaging modality (brightfield vs. fluorescence). The
dataset is designed to challenge an algorithm’s ability to generalize across
these variations. [Boo18]

Because of many labeling errors in the original dataset, a corrected dataset by Kon-
stantin Lopuhin3 was used.

See Figure 5.2 for example images.

STARDIST_DSB2018

The STARDIST_DSB2018 dataset includes a subset of the DSB2018 training images. Only
images of fluorescence microscopy without obvious labeling errors are included. The

2https://www.kaggle.com/c/data-science-bowl-2018/
3https://github.com/lopuhin/kaggle-dsbowl-2018-dataset-fixes/ commit 3035455

https://www.kaggle.com/c/data-science-bowl-2018/
https://github.com/lopuhin/kaggle-dsbowl-2018-dataset-fixes/
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Figure 5.3: Example image and ground truth segmentation of the CITYSCAPES dataset.

dataset has been used in the StarDist paper [Sch+18] and can be downloaded from the
GitHub repository of the project4.

CITYSCAPES

The CITYSCAPES dataset contains images of urban street scenes of 50 cities in Germany.
The images were taken at daytime throughout several months in spring, summer, and fall
at good to medium weather conditions. Dense instance-wise ground truth segmentations
for 30 classes are provided [Cor+16].

This dataset has been chosen to evaluate if pretraining on real-world images has a
valuable effect on the performance of models for microscope images. The dense ground
truth segmentations allows training of full encoder-decoder models. The models can be
reused easily for a nuclei segmentation task on microscope images. See Figure 5.3 for an
example image.

IMAGENET

The IMAGENET dataset contains many real-world photographs. During the experiments,
no model was trained on this large dataset, but a model is used that has been trained
on the ImageNet 2012 classification dataset [Rus+15].

5.2 Evaluation Metric

For the experiment evaluation, the mean Average Precision (mAP) was used as defined
for the 2018 Data Science Bowl5. Before we define the mAP, we define some requirements.

Definition 5.1 (Segment). A segment A ⊂ Ω of a segmentation s is the set of all points
that are assigned to label l ∈ L. segments(s) is the set of all segments of the segmentation
s.

4https://github.com/mpicbg-csbd/stardist/releases/tag/0.1.0
5https://www.kaggle.com/c/data-science-bowl-2018/overview/evaluation

https://github.com/mpicbg-csbd/stardist/releases/tag/0.1.0
https://www.kaggle.com/c/data-science-bowl-2018/overview/evaluation
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Definition 5.2 (Intersection over Union (IoU)). For segments A ⊂ Ω and B ⊂ Ω, the
Intersection over Union (also Jaccard index) is defined as:

IoU(A, B) := |A ∩B|
|A ∪B|

Definition 5.3 (True Positives, False Positives, False Negatives). For an instance seg-
mentation s : Ω → L, a predicted instance segmentation ŝ : Ω → L, and a threshold
value 0.5 ≤ t ≤ 1 we define we define the number of true positives (TP), false positives
(FP) and false negatives (FN) as follows:

TPt(s, ŝ) := |C|
FPt(s, ŝ) := |{A ∈ segments(ŝ) | A 6∈ C}|
FNt(s, ŝ) := |{B ∈ segments(s) | ¬∃A ∈ C : IoU(A, B) > t}|

With C being the set of correctly predicted segments:

C := {A ∈ segments(ŝ) | ∃B ∈ segments(s) : IoU(A, B) > t} (5.1)

Using the notion of True Positives, False Positives, and False Negatives, we can finally
define the mean Average Precision.

Definition 5.4 (Mean Average Precision). For an instance segmentation s : Ω→ L and
a predicted instance segmentation ŝ : Ω → L, the mean Average Precision is defined as
follows:

mAP(s, ŝ) = 1
|T |

∑
t∈T

TPt(s, ŝ)
TPt(s, ŝ) + FPt(s, ŝ) + FNt(s, ŝ) (5.2)

With the IoU thresholds T = {0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95}.
The mean Average Precision of a whole dataset is the mean over the mAP for each

segmentation.

Note that there are other definitions of the Average Precision that usually measure
the area under the precision-recall curve. In this work, the more straightforward metric
from the 2018 Data Science Bowl will be used because it requires no score value for
segments and results are comparable with the results of the 2018 Data Science Bowl.

5.3 Implementation Details

The experiments were implemented in Keras [Cho+15] with the TensorFlow [Aba+16]
backend. The code can be found at
https://github.com/HedgehogCode/keras-transfer-learning.

https://github.com/HedgehogCode/keras-transfer-learning
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Augmenter Parameters

Affine scale: {HL60_LOW_NOISE : [0.2, 1.2], GRANULOCYTE :
[0.5, 1.7]}, rotation: [0, 360], shear: [−16, 16]

CropToFixedSize width: 256, height: 256
Fliplr p: 0.5
Flipud p: 0.5
GammaContrast gamma: [0.5, 2.0]
Sharpen alpha: [0.0, 1.0]
Emboss alpha: [0.0, 1.0], strength: [0.5, 1.5]
Add value: [−0.1, 0.1]
AdditiveGaussianNoise scale: [0, 0.2]
GaussianBlur sigma: [0, 3]
MotionBlur
Invert p: 0.3

Table 5.2: List of data augmentation methods of the imgaug library applied to the
HL60_LOW_NOISE and GRANULOCYTE dataset for the Combining Simulated Datasets ex-
periment.

Dataset Splits Every dataset was split into a training and testing set. Furthermore,
10 percent of the training images were excluded from the training and used as a validation
set (2 percent for the CITYSCAPES dataset). If the number of training examples was
reduced, this did not affect on the validation dataset, which was still the same as for the
full training dataset.

Training The training was done with a batch size of 8 and an image size of 256× 256.
The patches were cropped randomly from the full-sized image and randomly flipped ver-
tically and horizontally. After 512 patches or 64 batches (1 step), the loss was computed
on the full-sized images of the validation set.

The Adam optimizer [KB15] was used for all models with a learning rate of 0.001,
which was reduced by a factor of 5 if the validation loss did not improve for eight steps.
The training was stopped once the validation loss did not improve for 12 steps.

The model with the ResNet50 [He+16] backbone (for the experiment in Section 5.6)
was trained with a batch size of 2; the learning rate was reduced if the validation loss
did not improve for 30 steps and the training was stopped if the validation loss did not
improve for 40 steps.

Data Augmentation The data augmentation was done with the imgaug library6. For
the Combining Simulated Datasets experiment (Section 5.9) multiple data augmentation
techniques were applied. The augmenters are listed in Table 5.2.

6https://github.com/aleju/imgaug

https://github.com/aleju/imgaug
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5.4 Experiment: StarDist with Res-U-Net Backbone

Motivation StarDist is a handy tool for instance segmentation of roundish shapes, but
the accuracy could be improved if a more powerful backbone was used. The StarDist
model in the original paper uses a usual U-Net backbone, but U-Net backbones have been
improved successfully (For example, for the Kaggle 2018 Data Science Bowl competition).

Description The usual U-Net was replaced by a Res-U-Net which is described in
Section 4.3. The StarDist model with the Res-U-Net backbone was compared to the
StarDist model with the usual U-Net backbone on the STARDIST_DSB2018 dataset (to
compare the results to the StarDist paper) and on the DSB2018 dataset to highlight the
improved modeling capacity. Additionally, a Plain-U-Net backbone was tested by using
the same architecture as the Res-U-Net but without the short residual skip connections.
This backbone was added to ensure that the performance gain does result from the
residual architecture and not just from adding more layers.

Results Table 5.3 shows the Average Precision of the StarDist model with Res-U-
Net backbone on the STARDIST_DSB2018 dataset. We observe that the performance is
better than the performance of StarDist that was reported by Schmidt and Weigert et
al. [Sch+18]. The Plain-U-Net performs much worse than the Res-U-Net and even worse
than the StarDist model for most IoU thresholds.

The mean Average Precision of StarDist models with both backbones is shown in
Figure 5.4. On the STARDIST_DSB2018 dataset the performance of the models only
differs slightly, but on the DSB2018 dataset the performance of the Res-U-Net backbone
is much better. The Plain-U-Net performs worse than both other backbones on both
datasets.

Threshold 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90

[S
ch
+
18

] U-Net (2 class) .674 .630 .598 .565 .534 .482 .415 .325 .203
U-Net (3 class) .806 .775 .743 .701 .654 .578 .491 .374 .226
Mask R-CNN .832 .805 .773 .730 .684 .598 .489 .353 .189
StarDist .864 .836 .804 .755 .685 .586 .450 .287 .119

StarDist (Res-U-Net) .871 .849 .823 .783 .725 .640 .529 .384 .192
StarDist (Plain-U-Net) .853 .831 .797 .749 .680 .583 .460 .294 .111

Table 5.3: Average Precision of the StarDist model with a Res-U-Net backbone at dif-
ferent IoU threshold values compared to the results from the StarDist paper [Sch+18].
The reported value is the mean value of six models.
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Figure 5.4: Scores of a StarDist model with the usual U-Net backbone, a Plain-U-Net
(like Res-U-Net but without the shortcut connections) and with the improved Res-U-Net
backbone for the STARDIST_DSB2018 and DSB2018 datasets.

5.5 Experiment: Different Noise Levels

Motivation During a biological experiment, the configuration of the image acquisition
can change. This can be due to new requirements that come up during the experiment
(e.g., lower light power to protect the sample) or due to new opportunities (e.g., new
microscope).

A concrete example would be that the acquisition speed needs would need to be
improved because tracking of cells was not possible in the previously recorded time
series. To reduce the acquisition time to achieve higher frame rates, one can reduce the
spatial resolution or light exposure. If the resolution should not be reduced anymore
because of the size of the imaged object, reducing light exposure is the only option. This
will result in images that have a lower signal to noise ratio than the previous images. A
lot of manual annotation labor can be saved if the model from the previous analysis (on
the less noisy images) could be reused.

Description The HL60_LOW_NOISE and HL60_HIGH_NOISE dataset simulate the ex-
plained example. The HL60_HIGH_NOISE dataset has a lower signal to noise ratio be-
cause of the reduced simulated acquisition time and dynamic range usage. A StarDist
model with a usual U-Net backbone was used to evaluate the transfer performance in
both directions.

Results The results of the transfer performance evaluation are shown in Figure 5.5a.
We can see that the pretrained models mostly perform better than the models with
random initialization for a low number of training examples. For only two training
examples, all models (with pretrained and random initialization) vary strongly in their
final performance. This effect vanishes with the usage of five training example. The
gap between models with pretrained and random initialization starts to close with ten
training examples. This is the case because the dataset is rather simple and very uniform.
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(b) Validation loss history during training.

Figure 5.5: Final scores and validation loss history of models that have been pretrained
on datasets with a different noise level.

The improvement is more significant if the model was pretrained on the dataset with
high noise.

Figure 5.5b shows the validation loss history of the models during the training. We
can see that models that have been pretrained learn much quicker.

5.6 Experiment: Pretraining on Natural Images

Motivation It has become common to use ImageNet pretraining in computer vision
tasks. The ImageNet dataset is used because it is huge and diverse and the learned
features proofed to be useful for many datasets of natural images.

Images of microscopes are not comparable with natural images, but the features that
were learned for natural images might still be useful for them. Therefore, it would be
interesting to find out if pretraining on large datasets of natural images helps models for
microscopic image analysis.

Description The CITYSCAPES dataset was used to pretrain models because it is a
relatively large dataset of natural images with segmentation ground truth. The seg-
mentation ground truth allows training models with the same backbone architecture
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Figure 5.6: Final scores and validation loss history of models that have been pretrained
on datasets of natural images.

(Res-U-Net) as needed for the StarDist models on microscope images. The pretrained
models were used on the DSB2018 dataset and the HL60_LOW_NOISE dataset.

Additionally, a backbone that was trained on the IMAGENET dataset was used. The
IMAGENET dataset does not provide ground truth segmentation. Therefore, the architec-
ture of the backbone needed to be extended in order to make it applicable. A pretrained
ResNet50 [He+16] was used for the encoder part of the model while the decoder part
was not pretrained.

Results Figure 5.6a shows the transfer performance evaluation. The pretraining on
CITYSCAPES seems to have a slight negative influence for the HL60_LOW_NOISE dataset.
The best model for each number of training examples is always a model with ran-
dom initialization. On the other hand, for the DSB2018 dataset, the pretraining on the
CITYSCAPES dataset does not seem to have a negative influence. However, it also does
not seem to have a positive influence (Except for the experiment with five training ex-
amples). Also using a model pretrained on the IMAGENET dataset does not improve the
final scores.

The validation loss history of all models is shown in Figure 5.6b. We observe similar
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learning curves for the pretrained models as for the randomly initialized models. Hence,
pretraining on natural images does not help to train models faster.

5.7 Experiment: Pretraining on Simulated Data

Motivation Obtaining ground-truth segmentations for a dataset is cumbersome and
labor-intensive. For real-world computer vision tasks, there are large labeled datasets
that can be used for pretraining. For microscopic image analysis, the images can differ
vastly, and there could be no available dataset that is large and similar enough to use
it for pretraining. In such cases, it could be helpful to simulate training images with
known ground truth labels. These labels can be used to pretrain a model which will
adapt quickly to the target dataset.

Description The transfer performance was for models that were pretrained on
each simulated datasets (HL60_LOW_NOISE, HL60_HIGH_NOISE, GRANULOCYTE) and later
trained for the DSB2018 dataset. The StarDist model with the usual U-Net backbone
was used.

Results The final scores for the transfer performance evaluation are shown in Fig-
ure 5.7a. We observe that pretraining on the HL60_LOW_NOISE dataset only improves
the performance slightly if at all and pretraining on the HL60_HIGH_NOISE dataset does
not improve the performance. This could be due to the simple nature of the HL60 based
datasets and the model trained on the HL60_HIGH_NOISE dataset probably focuses on
learning how to handle the noise, which is less critical on the DSB2018 dataset. The
improvements are greater for models that have been pretrained on the GRANULOCYTE
dataset. This makes sense because the GRANULOCYTE dataset is more challenging, and
the model has to learn how to handle nuclei of very different sizes and nuclei that are
not in focus.

Figure 5.7b shows the validation loss history of all models. We observe that the loss
starts much lower for the pretrained models and therefore they achieve better values
faster.

5.8 Experiment: Pretraining on DSB2018

Motivation The DSB2018 dataset contains images of fluorescence and bright-field mi-
croscopy which have been acquired under many different conditions. Therefore, the
dataset is very diverse in the field of light microscope images (like ImageNet for natural
images). Additionally, the dataset is large compared to other labeled datasets of mi-
croscope images. Since ImageNet proved to be a good candidate for the pretraining of
models on natural images, the DSB2018 dataset might be a promising candidate for the
pretraining models on microscope images.
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Figure 5.7: Final scores and validation loss history of models on DSB2018 that have been
pretrained on simulated datasets.

Description A transfer performance evaluation was performed using the DSB2018
dataset as the pretraining dataset and each simulated dataset (HL60_LOW_NOISE,
HL60_HIGH_NOISE, GRANULOCYTE) as the target dataset. A StarDist model with the
usual U-Net backbone was used.

Results Figure 5.8a shows the final scores of the transfer performance evaluation.
We can see that the pretraining helps to improve the scores significantly for the
HL60_LOW_NOISE and the GRANULOCYTE dataset if only few training images are used.
For the HL60_HIGH_NOISE dataset the pretraining does not help for the final scores.
This could be due to the low signal to noise ratio that cannot be handled by the model
pretrained on DSB2018.

The validation loss history, which is shown in Figure 5.8b shows that for all datasets,
the pretrained models fit much quicker.
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Figure 5.8: Final scores and validation loss history of models that have been pretrained
on the DSB2018 dataset.

5.9 Experiment: Combining Simulated Datasets for Pre-
training

Motivation Combining the motivations of the previous two experiments leads to the
conclusion that a diverse and challenging dataset of simulated images would be suited
well for pretraining. It is possible to simulate enormous datasets, which can be made
more diverse by using different simulators and different simulator settings. Additionally,
the diversity of the data can be improved by data augmentation. For example, inverting
the intensities of fluorescence images can make them look more like bright-field images.

Description For this experiment, the model was pretrained not only on one dataset
but on both the HL60_LOW_NOISE and the GRANULOCYTE dataset. During the training of
the backbone, the dataset was changed every 15 steps, and the backbone weights were
reused. The model was pretrained for a total of 300 steps.

The same experiment was repeated with data augmentation to increase the diversity
of the pretraining dataset (Section 5.3 contains the list of data augmentation techniques).
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Figure 5.9: Final scores and validation loss history of models that have been pretrained
on multiple simulated datasets.

Results As shown in Figure 5.9a, the scores of the models improved significantly if
the weight were pretrained. We can see that data augmentation helps to improve the
scores even further.

Figure 5.9b shows the validation loss history of the models. We can see that the
validation loss starts much lower for pretrained models—especially if the model was
pretrained with data augmentation.

5.10 Discussion
The experiments showed that transfer learning of the StarDist model can improve the
performance on small datasets of microscope images. We observe that the pretraining
dataset has to be related to the new dataset. As shown in Section 5.5, if the datasets
only differ in noise levels, the model can more easily adapt to the new data (especially
if the new data is easier than the pretraining data).

If the datasets are not that closely related, the source dataset has to contain images
that are visually similar to the images of the target dataset. We observe this in multiple
experiments. In Section 5.6, the models are pretrained on natural images that are not
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related and not similar to the target dataset. The performance of the models does not
benefit from this pretraining. In Section 5.7, the models are pretrained on simulated
images that are very uniform and therefore only related to some of the images of the
DSB2018 dataset. For example, none of the simulated datasets contains images that
look like they are from bright field microscopy, but the DSB2018 dataset includes bright
field images. The benefit for the pretrained images is only small if there is any. The
DSB2018 is more diverse and contains images that are related to any of the simulated
datasets. In Section 5.8, we can see that DSB2018 pretraining improves the models
on these datasets. In the last experiment in Section 5.9, the simulated datasets are
combined and augmented such that the pretraining is more diverse and closer related to
the target images. We observe that the model benefits from this pretraining much more
than just using one of the simulated datasets on its own.

A significant observation is that an appropriate pretraining can reduce the training
time significantly. Pretrained models start at a much lower validation loss and drop
quicker to values that are very close to the final validation loss. This can be applied in
practice because the models can be trained on lower-tier hardware within a reasonable
time. Also, the analyst does not have to wait that long until he gets reasonable results
that can be used to analyze the data further.



Chapter 6

KNIME Implementation

In this chapter, a framework for instance segmentation in KNIME Analytics Platform
is introduced. KNIME Analytics Platform [Ber+09] is a software that allows building
data analysis workflows with a graphical programming interface. The workflows consist
of connected processing steps that are implemented by KNIME Nodes.

Microscopes can produce large images that need to be processed automatically.
Therefore, the framework is required to process large images. However, processing a
large image is often not that easy because the images itself or the processing techniques
can require more memory than available on the machine. In this case, one has to come
up with processing techniques that do not require the whole image at once. The KNIME
Tensor Processing framework addresses these issues by providing means to define a com-
putation graph that can be executed in a tiled fashion and therefore, never requires the
whole image to be loaded into memory. The Tensor Processing framework is described
in more detail in Section 6.1.

Another requirement, which is directly derived from the desired users of the devel-
oped framework (e.g., biologists), is high usability without the need for programming.
Ideally, the framework uses software and usage patterns that are already known to the
user. KNIME Analytics Platform is easy to use via a visual programming interface that
enables non-programmers to create complex data analysis pipelines. It is already used
by many biologists and provides many tools to analyze the data further after the in-
stance segmentation. Therefore the KNIME Instance Segmentation framework, which
is described in Section 6.2, was developed.

6.1 Tensor Processing Framework

The KNIME Tensor Processing framework enables programmers to build a computation
graph by defining single operations on tensors and stacking them together. This com-
putation graph can then be executed on different input data. The graph executor takes
care of executing the operations only on tiles of the image, caching intermediate results,
and scheduling the execution order. The programmer only has to take care that the
defined operations can be executed in a tiled fashion. See Figure 6.1 for an illustration

37
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Figure 6.1: Illustration of the idea of the KNIME Tensor Processing framework. The
user defines a graph of operations which is later executed. The boxes represent images
before and after a context map (CM) operation. The context map operates only on a
tile of the image but needs a large tile of the input image (drawn in red).

of a computation graph and a context map operation (which executes an operation on
a tile of a tensor using some additional context).

KNIME Implementation

In KNIME Analytics Platform, the Tensor Processing framework is used in cells (entries
in a KNIME table) that contain either an evaluated tensor or a computation graph and
references on the input tensors. KNIME Nodes can add nodes to this computation graph
and either execute it directly or save the extended computation graph in a new cell. This
extending of the computation graph results in lazy evaluation that allows the KNIME
Nodes to be executed quickly and prevents the saving of uninteresting intermediate
results which is handy for data augmentation and the processing of large images.

Optimization Opportunities

The formulation of the processing pipeline as a computation graph allows for many
potential optimizations. The static graph can be optimized by merging equal nodes
(to prevent running an operation multiple times) or moving crops (to prevent running
operations on data that is cropped away). The execution of the graph can be optimized
by smart caching of intermediate results (if the caching overhead is lower than the cost
of executing the operation again) and an execution order that makes maximum use of
the available resources.
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Figure 6.2: Parts of the KNIME Instance Segmentation framework.

The general formulation of the graph allows switching the execution strategy to
something more efficient quickly.

6.2 KNIME Instance Segmentation Framework

The Instance Segmentation framework was created to enable the usage of instance seg-
mentation models in KNIME Analytics Platform. At the highest level, the framework
makes use of shared Components (A Component is a KNIME Node that contains a work-
flow consisting of multiple KNIME Nodes itself). These Components can be reused in
other workflows to train and apply instance segmentation models. They are documented
implicitly by the encapsulate workflow which can be changed to change their behavior.

The shared Components are build from KNIME Nodes that are either provided by
KNIME Analytics Platform and its official extensions, the Tensor Processing framework,
or the KNIME Instance Segmentation framework. The KNIME Nodes of the KNIME
Instance Segmentation framework provide mainly functionality to execute deep learning
models and apply data augmentation using the computation graph. Also, they provide
preprocessing and post-processing procedures needed by the implemented models. The
KNIME Nodes do not encapsulate the logic and algorithms but rely on lower level
implementations that can be reused.

See Figure 6.2 for an overview of the main parts of the KNIME Instance Segmentation
framework.

The framework can be extended by creating new Components that rely on existing
KNIME Nodes, implementing new KNIME Nodes that rely on existing operations and
algorithms, or implementing new operations and algorithms.

6.2.1 Shared Components

Load/Generate/Read [. . .]: Load/Generate/Read the datasets used in the Example
Workflows section. Each Node has two table outputs, one for the training data
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Figure 6.3: Shared components of the framework.

and one for the testing data. The Nodes can be swapped.

Train StarDist Model: Creates and trains a StarDist model. The data augmentation
and preparation is done by adding operations to the computation graph. The
training is done by calling the Keras API [Cho+15] from the KNIME Python
Integration. See Figure A.5a for a simplified version of the encapsulated workflow.

Retrain StarDist Model: Fine-tunes the given StarDist model on the given training
data. The Node is very similar to the Train StarDist Model Node. However, it
does not create the StarDist model but uses the backbone of the input model.

Train U-Net [2,3]-class Model: Creates and trains U-Net models. The input and
output ports correspond to the ports of the Train StarDist Model Node and all
training from scratch Nodes can be swapped.

Apply StarDist Model: Applies a StarDist model to input images. The execution of
the deep learning model is done by an operation that is added to the computation
graph. The backbone of the StarDist model is a U-Net [RFB15], and the whole
model contains only convolutional layers, upsampling layers, and max-pooling lay-
ers which makes it applicable to images of arbitrary size. It can also be executed
on tiles of an image if a sufficient context is provided to prevent border artifacts.
The Tensor TensorFlow Executor Node implements this tiled execution of the
model. After the deep learning model execution, the non-maximum suppression
is executed on the whole image at once. The Component outputs a segmenta-
tion for each input image and the individual segments along with their score. See
Figure A.5b for a simplified version of the encapsulated workflow.

Apply StarDist Model (DL Executor): Applies a StarDist model without the use
of the Tensor TensorFlow Executor Node but with the DL Network Executor (from
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the KNIME Deep Learning Integration) which executes the model on the whole
image at once. In Section 6.3.4, the limitations of this implementation will be
shown.

Apply U-Net [2,3]-class Model: Applies a U-Net model on the input images. The
input and output ports correspond to the ports of the Apply StarDist Model Node,
and all apply-nodes can be swapped.

Compute Average Precision: Compares predicted segments to a ground truth seg-
mentation and computes the Average Precision of the prediction for multiple in-
tersection over union (IoU) thresholds.

See Figure 6.3 for all developed Components.

6.3 Example Workflows
KNIME Workflows that train and evaluate a StarDist model, a 2-class U-Net and a
3-class U-Net were built using the developed framework.

The first two examples demonstrate how the framework can be used to train all of the
mentioned models from scratch on new data. Section 6.3.1 demonstrates and evaluates
the models on an easy artificial dataset. In Section 6.3.2, the models are used on the
STARDIST_DSB2018 dataset. Transfer learning of a StarDist model is demonstrated in
Section 6.3.3 using a dataset with a very small amount of labeled training data. Finally,
the framework is used to label a huge image in Section 6.3.4.

Screenshots of the developed KNIME workflows are shown in Appendix A.

6.3.1 Toy Example (TOY)

The TOY dataset consists of images of touching half-ellipses. The dataset was specifically
designed to showcase the limitations of methods that do an NMS on bounding boxes
of the object instances (like Mask R-CNN). The bounding boxes of the half-ellipses can
overlap significantly, which can cause one of the ellipses to be suppressed by the NMS.
Mask R-CNN is not yet implemented in the framework, but we will still use the dataset
because it is an accessible dataset to test and demonstrate the models. The dataset
consists of a total of 500 images (475 training, 25 testing) with dimensions of 256× 256.
Some example images from the dataset are shown in Figure 6.4.

Three workflows were built (one workflow for each model) to evaluate the models on
the TOY dataset using the developed framework. The workflows generate the training
and testing examples (the generator uses a fixed seed), train the model on the training
data, apply the model on the testing data and compute the Average Precision using the
ground truth segmentation of the testing data. The workflows only differ in the Train
<model-name> and Apply <model-name> Nodes. A screenshot of the workflow for the
3-class U-Net is shown in Figure A.1.

Table 6.1 shows the Average Precision scores for each model. As expected, StarDist
is superior to the U-Net models and obtains perfect detections for lower IoU thresholds.
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Figure 6.4: Some images from the generated TOY dataset along with their ground truth
instance segmentations.

Figure 6.5: Segmentation results for the TOY dataset. Contains the original image, the
segmentation of the 2-class U-Net, 3-class U-Net and StarDist model in this order.

For higher thresholds, StarDist gets worse quickly because the correct object shapes
cannot be represented by the star-shaped polygons perfectly. Figure 6.5 confirms this
assumption. The U-Net models wrongly merge objects while the StarDist model detects
every object correctly but predicts non-perfect shapes.

Threshold 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90

U-Net (2-class) .723 .664 .661 .661 .661 .657 .655 .652 .647
U-Net (3-class) .878 .857 .857 .857 .857 .857 .857 .857 .857
StarDist 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .965 .411

Table 6.1: Average Precision (AP) of the evaluated models on the TOY dataset for dif-
ferent intersection over union (IoU) thresholds.

6.3.2 Data Science Bowl 2018 (STARDIST_DSB2018)

The STARDIST_DSB2018 dataset contains real fluorescence microscopy images that are
very diverse. The images have been annotated manually, but some annotations contain
mistakes. The dataset consists of a total of 497 images (447 training, 50 testing) of
varying sizes.

Again, three workflows were built that only differ from the TOY example workflows
in the data loading. A screenshot of the workflow for the StarDist model is shown in
Figure A.2.
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Figure 6.6: Segmentation results for the STARDIST_DSB2018 dataset. Contains the orig-
inal image, the segmentation of the 2-class U-Net, 3-class U-Net and StarDist model in
this order.

Table 6.2 shows the Average Precision scores for each model. As for the TOY dataset,
StarDist is superior for lower IoU thresholds but not for very high thresholds. Fig-
ure 6.6 shows the segmentation results of one selected image from the testing set. Again,
StarDist is not able to reconstruct the exact shape performs well in recognizing all indi-
vidual cells and separating them.

Threshold 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90

U-Net (2-class) .722 .684 .655 .628 .600 .562 .495 .403 .299
U-Net (3-class) .748 .704 .673 .643 .616 .575 .512 .428 .311
StarDist .820 .798 .766 .725 .672 .588 .490 .350 .188

Table 6.2: Average Precision (AP) of the evaluated models on the STARDIST_DSB2018
dataset for different intersection over union (IoU) thresholds.

6.3.3 Retraining StarDist

The developed framework can be used to reduce the training time and improve the
accuracy of models by initializing the model weights with reasonable values and using
transfer learning.

A new dataset was chosen to demonstrate this. The PhC-C2DL-PSC dataset from
the celltrackingchallenge1 consists of phase contrast microscopy images of stem cells and
contains only four segmented images.

A KNIME workflow was build that reads a StarDist model, that was pretrained on
DSB2018, and retrains it on the new dataset using the Retrain StarDist Model Component
(see Figure A.4).

Figure 6.8 shows the training loss history of the StarDist model in KNIME. We can
see that the loss of the pretrained model drops much quicker. The pretrained model has
a much lower loss of about 0.08 after 178 batches than the randomly initialized model

1http://celltrackingchallenge.net/2d-datasets/

http://celltrackingchallenge.net/2d-datasets/
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Figure 6.7: Segmentation results for the PhC-C2DL-PSC dataset. Contains the original
image, the segmentation of the randomly initialized model and the pretrained model.

(a) Loss history with a pretrained model (b) Loss history with a randomly initialized
model

Figure 6.8: Loss history of a pretrained model and a randomly initialized model in
KNIME.

which has a loss of about 0.12 after 179 batches. Both models trained for around ten
minutes on an NVIDIA GeForce GTX 1080 Ti.

Figure 6.7 shows an example result for the trained models. We can see that the
randomly initialized model (middle image) does not predict useful segmentations. The
pretrained model, however, (right image) can detect and segment most of the cells. The
pretrained model struggles to reproduce the cell shapes, but it does much better than
the randomly initialized model, which predicts mostly circles.

6.3.4 StarDist on a Large Image

A workflow which executes the StarDist model on an image with a resolution of 3840×
3840 was built. This workflow verifies that the framework enables execution of deep
learning models on large images. The image was generated by repeating one of the
testing examples of the DSB2018 dataset, but images of this size are not unusual in some
areas of microscopy like histopathology [Gur+09]. Note that the developed KNIME
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Node Tensor TensorFlow Executor can also be applied to more-dimensional datasets
where the memory issue appears much quicker.

The workflow (which is shown in Figure A.3) loads the image and applies the StarDist
model trained in Section 6.3.2 on the image. The Apply StarDist Model Component
executes the deep learning model by adding a context-map node to the computation
graph, which executes the model on tiles of the image with a context. The Apply StarDist
Model (DL Executor) Component executes the deep learning model on the whole image
in one go. See also Section 6.2 for a description of the Nodes.

Experiments using the demonstrated workflows showed that executing the deep learn-
ing model on the large image in one go is not possible (on the tested hardware) while
the tiled execution was possible (see Table 6.3). These results show that the developed
framework enables an application of deep learning models for instance segmentation on
large images that has not been possible before.

System Laptop,
32 GB RAM,
no GPU

Laptop,
32 GB RAM,
4 GB GPU

Workstation,
32 GB RAM,
11 GB GPU

Tiled
Apply StarDist Model

3

(RAM: ∼ 10 GB)
3

(RAM: ∼ 8 GB)
3

(RAM: ∼ 8 GB)

Non-Tiled
Apply StarDist Model
(DL Executor)

7

(JVM crashed)
7

(OOM Exception)
7

(OOM Exception)

Table 6.3: Results of applying the StarDist model on a large image. The tiled execu-
tion did succeed on every configuration while the non-tiled execution failed on every
configuration.





Chapter 7

Conclusion

This work investigated approaches to surpass the drawbacks of deep learning based
segmentation for microscope images.

Using the StarDist model with the usual U-Net backbone and with the improved
Res-U-Net backbone transfer learning on different microscopic datasets was evaluated.
Five experiments were conducted to evaluate if transfer learning is applicable to micro-
scopic image analysis. The experiments show that the choice of the pretraining dataset
is essential and that transfer learning can improve the performance of the model on
the target dataset. One fundamental observation is that transfer learning can reduce
the required training time significantly. The reduced training time and the improved
performance on datasets with only a few images make deep learning based segmentation
methods more useful for microscopic image analysis.

To make deep learning based segmentation more accessible, a framework was de-
veloped that allows to train and apply deep learning models on images without pro-
gramming knowledge and with simple usage patterns. The framework is easy to use (by
reusing components) and extensible (by creating new components, KNIME Nodes, or
lower-level operations). It was demonstrated that this framework can be used to train
deep learning models model from scratch, retrain models on new data and apply models
on arbitrarily sized images.

Additionally, an improvement to the StarDist model was proposed and evaluated.
The backbone consisting of residual blocks was found to perform better on the more
complex DSB2018 dataset while not reducing the performance on another dataset. It has
been shown that this performance increase is due to the residuals and not the increased
model depth.

Future Work In future work methods to work with images that have a higher di-
mensionality and a varying number of channels need to be evaluated. Models that were
pretrained on a dataset with one channel cannot be applied easily to images with mul-
tiple channels. Especially in fluorescence microscopy, the channels can contain essential
information that needs to be handled appropriately by the model. It is not clear what
pretraining is required for a fluorescence dataset with specific staining.

47
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Additionally, other methods of transfer learning need to be evaluated on various mi-
croscope images. The related works chapter lists multiple approaches to improve transfer
learning of deep networks. It remains to be seen if they can be applied successfully to
microscope images.
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Appendix A

KNIME Workflows
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Figure A.1: KNIME Workflow for training and evaluating a U-Net 3-class model on the
TOY dataset.
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Figure A.2: KNIME Workflow for training and evaluating a StarDist model on the
STARDIST_DSB2018 dataset.
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Figure A.3: KNIME Workflow for applying a StarDist model on a large image.
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Figure A.5: Parts of the training and inference workflows for the StarDist model. The
normalization, data augmentation, training data preparation, model execution, and la-
beling extraction is done by adding operations to the Tensor Processing computation
graph.





Appendix B

Additional Results

This appendix contains plots for a few additional experiments that were executed. The
results are not described or interpreted.

100 101 102

Step

0.50

0.75

1.00

1.25

1.50

Va
lid

at
io

n 
lo

ss

Pretraining: HL60_LOW_NOISE
Data: HL60_HIGH_NOISE

100 101

Step

0.1

0.2

0.3

0.4

Pretraining: HL60_HIGH_NOISE
Data: GRANULOCYTE

100 101 102

Step

0.2

0.4

0.6

0.8

Pretraining: GRANULOCYTE
Data: DSB2018

Initialization
pretrained
random
Num Train
2
5
F

Figure B.1: Validation loss history of models that have been pretrained on a simulated
dataset compared with the history of models that have been initialized randomly. The
pretrained models achieve a lower loss quicker.
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Figure B.2: Mean AP for models that have been pretrained on a simulated dataset
compared with models that have been trained with random initialization. All models
use a StarDist head and a simple U-Net backbone.



Appendix C

Installation Instructions

This appendix describes how to setup KNIME Analytics Platform to use the Instance
Segmentation Framework KNIME Nodes from Chapter 6.

1. Download KNIME Analytics Platform: https://www.knime.com/downloads.

2. Install and setup the KNIME Python Integration as describe here: https://docs.
knime.com/latest/python_installation_guide/index.html.

3. Install and setup the KNIME Keras Integration as described here: https://
docs.knime.com/latest/deep_learning_installation_guide/index.html#
keras-integration.

4. Install and setup the KNIME TensorFlow Integration as described here: https://
docs.knime.com/2018-12/deep_learning_installation_guide/index.html#
tensorflow-integration.

5. Add the Instance Segmentation update site:
Go to File → Preferences → Install/Update → Available Software Sites
and add the URL https://dev.b-wilhelm.de/instance-seg/. Also deactivate
the Community Extensions update site because it contains conflicting plugins.

6. Install the special dependencies by installing every plugin from the added update
site: Go to Help → Install New Software..., select the added update site,
deselect Group items by category and install every listed extension.

7. Import the Instance Segmentation Framework: Download the framework from
https://drive.google.com/open?id=1qNFsEof4Iyu8k4SaJ-RIV0nccdI5c14-
and import it into KNIME Analytics Platform with File → Import KNIME
Workflow....

The code can be found at
https://drive.google.com/open?id=1OjQld8cKPG1osjyrmWJzZwK9_mZs75mr.
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