Evaluating the Applicability of Transfer Learning for Deep Learning Based Segmentation of Microscope Images

Benjamin Wilhelm October 15, 2019

University of Konstanz

What was the Title Again?

Evaluating the Applicability of Transfer Learning for Deep Learning Based Segmentation of Microscope Images Evaluating the Applicability of Transfer Learning for Deep Learning Based Segmentation of **Microscope Images** "Microscopy [...] has served as a fundamental scientific technique for centuries. [...]. It **remains an invaluable tool in biology and healthcare** and has been integrated increasingly into modern chemical instrumentation. [emphasis added]"¹

¹Bell and Morris, An Introduction to Microscopy.

Microscope Images

(a) Light microscope Image by Masur [CC BY-SA 3.0 (https://creativecommons.org/ licenses/by-sa/3.0/)]

(b) Electron microscope

Image by Akademie věd České republiky / Czech Academy of Science [CC BY-SA 3.0 cz (https://creativecommons.org/ licenses/by-sa/3.0/cz/deed.en)]

(c) Scanning-probe microscope Image by Sraisac [CC BY-SA 4.0 (https://creativecommons.org/ licenses/by-sa/4.0)] (cropped)

(a) Bright field microscopy image Image by Medmyco at English Wikipedia [CCO] (b) Fluorescence microscopy image Image by ZEISS Microscopy from Germany [CC BY 2.0 (https: //creativecommons.org/licenses/by/2.0)]

(c) Electron microscopy image Image by Dartmouth College Electron Microscope Facility [Public domain] Evaluating the Applicability of Transfer Learning for Deep Learning Based Segmentation of Microscope Images

Figure 3: Semantic segmentation and instance segmentation of kittens. $_{\rm Image \ b^* \ [CC0]}$

Evaluating the Applicability of Transfer Learning for **Deep Learning** Based Segmentation of Microscope Images Evaluating the Applicability of Transfer Learning for Deep Learning Based Segmentation of Microscope Images

U-Net

Figure 4: U-Net² architecture.

²Ronneberger, Fischer, and Brox, "U-Net: Convolutional Networks for Biomedical Image Segmentation".

Figure 5: Input and outputs of a StarDist³ model.

³Schmidt et al., "Cell Detection with Star-Convex Polygons".

Advantages:

- No merging of touching objects
- \cdot No suppression of crowded object
- Relatively few parameters

Figure 6: Residual building blocks⁴ of the Res-U-Net.

⁴He et al., "Deep Residual Learning for Image Recognition".

Evaluating the Applicability of **Transfer Learning** for Deep Learning Based Segmentation of Microscope Images

Transfer learning means adapting knowledge from one task to another task

Deep Transfer Learning

Deep Transfer Learning

 \rightarrow

Drawbacks

- Require many labeled training images
- Require an expert to train and apply

Drawbacks

- Require many labeled training images
- Require an expert to train and apply

Evaluate Transfer Learning

Experiment: Different Noise Levels

- Imaging conditions change
- Same content but different images
- Transfer knowledge of previous model to reduce training images and training time

(a) HL60_LOW_NOISE

(b) HL60_HIGH_NOISE

Experiment: Different Noise Levels

Experiment: Different Noise Levels

Experiment: Natural Images

- ResNet encoder pretrained on ImageNet
- Used for many models
- Train on DSB2018

Experiment: Pretraining on DSB2018

- Finding a good pretraining dataset: DSB2018
- Fluorescence and bright-field microscopy
- Different conditions
- \cdot Diverse and relatively big
 - \rightarrow Good for pretraining

Experiment: Pretraining on DSB2018

Experiment: Pretraining on DSB2018

Experiment: Combining Simulated Datasets for Pretraining

- Use simulated data
- $\cdot\,$ Can generate tons of images
- Different simulators to increase diversity
- Data augmentation to increase diversity

Experiment: Combining Simulated Datasets for Pretraining

Experiment: Combining Simulated Datasets for Pretraining

Drawbacks

- Require many labeled training images
- Require an expert to train and apply

KNIME Implementation for Simplified Usage

KNIME Analytics Platform

Figure 10: KNIME Analytics Platform Image from https://www.knime.com/knime-analytics-platform

StarDist Workflow KNIME Workflow

StarDist Workflow KNIME Workflow

StarDist Workflow KNIME Workflow

- Dataset from the $celltrackingchallenge^5$
- Phase contrast microscopy
- Only 4 segmented images
- Retrain StarDist model trained on DSB2018

⁵http://celltrackingchallenge.net/2d-datasets/

Figure 11: Results of a model with random initialization vs a pretrained model.

Conclusion

Transfer learning evaluation

- Can improve the model performance on small datasets
- Training time can be reduced
- Choice of the pretraining dataset is essential

Developed Framework

- Makes deep learning methods accessible
- Train, apply and retrain models
- Extensible

References i

- Bell, Suzanne and Keith Morris. An Introduction to Microscopy. CRC Press, Oct. 2009. DOI: 10.1201/b15738. URL: https://doi.org/10.1201/b15738.
- He, Kaiming et al. "Deep Residual Learning for Image Recognition". In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, June 2016. DOI: 10.1109/cvpr.2016.90. URL: https://doi.org/10.1109/cvpr.2016.90.
- Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. "U-Net: Convolutional Networks for Biomedical Image Segmentation". In: Lecture Notes in Computer Science. Springer International Publishing, 2015, pp. 234–241. DOI: 10.1007/978-3-319-24574-4_28. URL: https://doi.org/10.1007/978-3-319-24574-4_28.
- Schmidt, Uwe et al. "Cell Detection with Star-Convex Polygons". In: Medical Image Computing and Computer Assisted Intervention – MICCAI 2018. Springer International Publishing, 2018, pp. 265–273. DOI: 10.1007/978-3-030-00934-2_30. URL: https://doi.org/10.1007/978-3-030-00934-2_30.

Questions?

Datasets — Simulated Datasets

(a) HL60_LOW_NOISE

(b) HL60_HIGH_NOISE

(c) GRANULOCYTE

Datasets – DSB2018

Experiment: StarDist with Res-U-Net Backbone

Experiment: Pretraining on Natural Images

Experiment: Pretraining on Natural Images

Experiment: Pretraining on Simulated Data

Tensor Processing Framework

KNIME Instance Segmentation Framework - Large Image Workflow

