
Image Reconstruction with a GAN
Gaussian Denoiser

Master’s Thesis

submitted by

Benjamin Wilhelm
at the

Faculty of Sciences

Department of Computer and Information
Science

1. Reviewer: Prof. Dr. Bastian Goldlücke
2. Reviewer: Prof. Dr. Oliver Deussen

Konstanz, 2022



Benjamin Wilhelm
Image Reconstruction with a GAN Gaussian Denoiser
Master’s Thesis, University of Konstanz, 2022.



Abstract

Many fundamental problems in image analysis and image processing are in-
verse problems. Examples are image reconstruction tasks like denoising, deblur-
ring, super-resolution, inpainting, and demosaicing. Simple learning-based meth-
ods learn an end-to-end mapping between degraded and clean images to solve these
tasks. Recently, deep neural networks have become the default choice. They are
very effective but have the critical disadvantage of retraining if the task changes.
Classical model-based methods rely on a prior; it is easy to adapt them to a new
task. However, the choice of the prior is crucial. Plug-and-play methods for image
reconstruction have been introduced using a Gaussian denoiser as a prior. In this
work, we propose a new powerful denoiser called DRUGAN. Trained using the
GAN framework, DRUGAN achieves compelling denoising results. It outperforms
the perceptual quality of all other models by reconstructing edges and texture
accurately. For more complex image reconstruction, we plug DRUGAN into two
algorithms; the deep mean-shift prior (DMSP) [Big+17] algorithm and an itera-
tive algorithm based on half quadratic splitting (HQS) [Zha+17b]. We evaluate
the algorithms on non-blind deblurring, single image super-resolution, multi-frame
super-resolution, and inpainting. We report all results and find that DRUGAN
achieves outstanding results for non-blind deblurring with the HQS algorithm.
Fine details and sharp edges are reconstructed much better than with other mod-
els. For other tasks, we observe that the algorithms can be adapted more easily to
slightly changing objectives which is not the case for end-to-end learned methods.
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Chapter 1

Introduction

Solving ill-posed inverse problems is a fundamental part of image analysis and im-
age processing. Essential image reconstruction tasks like denoising, deconvolution,
super-resolution, demosaicing, and inpainting are inverse problems. In general, in-
verse problems are the inverse of a forward problem. If the forward problem is
applying a mathematical modelM given its parametersm to obtain an observation
o

o = M(m),

the inverse problem is to obtain the parameters m of a mathematical model M
given the observation o.

m = M−1(o)

An inverse problem is ill-posed if there is not exactly one unique solution or if
the solution does not continually depend on the data [Gol17].

Classical approaches that solve inverse problems rely on optimization using
known properties of the inverse problem and a regularizer or prior, which drives
the solution to a reasonable image. We use the classical image degradation
model [Big+17]

y = Hχ+ n, n ∼ N (0, σ2
n), (1.1)

where H is an operation on the image (blur for deconvolution, downscaling for
single image super-resolution, masking regions for inpainting), χ is the unknown
clear image, and n is Gaussian noise. A maximum a posterior (MAP) estimator
can solve the inverse problem. To get the estimate x̂ for the clear image χ, we
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2 CHAPTER 1. INTRODUCTION

want to maximize the probability p(x|y).

x̂ = argmax
x

[p(x|y)]

= argmax
x

[p(y|x) p(x)] |Bayes theorem

= argmax
x

[log(p(y|x))︸ ︷︷ ︸
data(x)

+ log(p(x))︸ ︷︷ ︸
prior(x)

] |Using log-likelihood

Therefore, we end up maximizing a data term data(x) and a prior term prior(x).
The data term ensures our estimate fits our observation y while the prior term
drives our estimate to be a reasonable image.

x̂ = argmax
x

[data(x) + prior(x)] (1.2)

Analogously, we can solve the inverse problem by minimizing an energy function

x̂ = argmin
x

[E(x)]

= argmin
x

[
1

2σ2
n

‖y −Hx‖2 + λΦ(x)
]
, (1.3)

where 1/2σ2
n ‖y −Hx‖2 is the data fidelity term, and λΦ(x) is the regularizer or

prior term [Zha+21a].
After defining a suitable prior that will force the solution to have the properties

of an authentic image, an optimization algorithm can find the estimate. Methods
like this are called model-based methods.

However, modern methods go another way. With the upswing of deep-learning-
based image analysis methods, they were also used for inverse problems [MSY16;
Zha+17a; Zha+21b; Don+16; Led+17; Wan+19b; Liu+18]. The general idea of
end-to-end learned methods is to train the parameters of a machine learning
model to map directly from the degraded image or observation to the clean image.
Training data can be generated easily by applying the degradation model to a
dataset of clean images. While these methods proved to be very effective in quality
and speed, they have a significant disadvantage. Unlike model-based methods,
these machine learning models must be retrained for each task. Depending on the
specific model, retraining often requires a vast amount of computational resources
(multiple days on a high-performance GPU).

To combine the versatility of model-based methods with the performance of
deep learning, we will use a deep neural network to optimize the prior of the
energy function. In particular, we will look at two proposed methods that utilize
a denoising network to optimize the prior.
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Figure 1.1

The first method was introduced by Bigdeli et al. [Big+17] and will be called
DMSP. They defined a prior, representing a smoothed version of the natural image
distribution. For optimizing this prior, they used the fact that the output of an
optimal denoising network corresponds to the mean-shift on the data distribution.

The second method uses the Half Quadratic Splitting (HQS) algorithm. Zhang
et al. [Zha+17b; Zha+21a] used a denoiser to solve the second subproblem of the
HQS algorithm, which separates the prior from the data term.

Chapter 3 describes both methods in detail.

Degradation Models DMSP and HQS can be adapted to work on a wide range
of image reconstruction problems using one single denoiser.

The denoiser will be learned to solve the simple degradation of additive white
Gaussian noise with a certain standard deviation σn added to each pixel of the
clean image. In the general degradation model in Equation (1.1), H is the identity.
See Figure 1.1a for an illustration of the image degradation model that is assumed.

The DMSP and HQS algorithms can be used for deblurring, super-resolution,
and inpainting. The imaging model assumed for deblurring is more complex than
for denoising. Before adding noise, the image is blurred by a convolution with a
blur kernel. Optimally, the blur kernel is just the point spread function of the
imaging system. However, with a hand-held camera, motion blur is a relevant
factor. Figure 1.1b shows the degradation model for deblurring with an authentic
blur kernel by Levin et al. [Lev+09]. Note that the blur kernel can change across
the image in practice [Lev+09], but this is not considered in this degradation
model. If the blur kernel and the standard deviation of the noise are known, the
task is called non-blind deblurring. If they are unknown, the problem gets much
more complicated and is called blind deblurring.

The model used for super-resolution additionally assumes a downsampling op-
eration after blurring the image. The downsampling operation selects each sth
pixel for a downsampling factor of s. If only one low-resolution image is avail-
able, the task is called single image super-resolution. Figure 1.2 illustrates the
degradation model for this task. If multiple images are observed, the task is called
multi-frame super-resolution. In this case, the model also assumes that the in-
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Figure 1.2: Degradation model for single image super-resolution
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Figure 1.3: Degradation model for multi-frame super-resolution

dividual images are somehow warped compared to the clean ground truth image
(offsetting the camera or motion in the frame). The frames must be warped dif-
ferently and with sub-pixel differences because otherwise, there would not be any
additional information compared to single image super-resolution. See Figure 1.3
for a visualization of the model using four frames.

The last reconstruction task that we will inspect is called image inpainting. The
image degradation model assumes that a part of the image got missing. Figure 1.4
shows how a mask is applied to the image removing some information. Of course,
the region could be deleted manually to remove unwanted objects from the image.

Section 3.3 will describe how the reconstruction task for the mentioned degra-
dation problems can be solved using DMSP and HQS.

add
noisemask

Figure 1.4: Degradation model for inpainting
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Denoising GAN The main contribution of this work is to improve the visual
quality of the reconstructed images by using the GAN framework to train a supe-
rior denoiser. In the GAN framework [Goo+14], a generator and a discriminator
compete against each other. The generator is trained to generate artificial samples
indistinguishable from samples of the data distribution. This is done by optimizing
the parameters to fool the discriminator, trained to distinguish between artificial
and real samples. Hence, the GAN framework forces the models to learn distinct
properties of the data distribution. We will add a discriminator loss to a denoising
neural network to use this. Our denoiser is trained to produce an image that is the
denoised version of the input and to fool a discriminator. This forces the denoiser
to focus more on details that improve the perceived quality of the image for the
discriminator. In the results, we will see that this also improves the visual quality
as perceived by a human. Using the GAN framework for image reconstruction fol-
lows the idea of SRGAN [Led+17] and ESRGAN [Wan+19b], where the authors
trained GAN models for single image super-resolution. Section 3.4 describes in
detail how the model is constructed and trained.

Contributions

• This work introduces a new Gaussian denoiser based on the GAN framework
called DRUGAN. The model uses the powerful architecture of DRUNet but
improves the training procedure. DRUGAN is compared to the state-of-the-
art using a perceptual metric based on deep features. The denoised images
have better visual quality than every other tested model. The perceptual
quality improvement is evident in visual examples that are given in Chapter 4
and Appendix A.

• This work provides an implementation of two optimization algorithms that
utilize a Gaussian denoiser to optimize a prior that relates to the distribution
of natural images. The algorithms are applied to a range of image reconstruc-
tion tasks. For DMSP and HQS, solutions for non-blind image deblurring,
single image super-resolution (bicubic and blur downscaling), and inpainting
are provided. Only using HQS, the more complicated task of multi-frame
super-resolution is solved and applied to videos and light fields.

• This work evaluates the optimization algorithms using the newly trained
DRUGAN denoiser. The results for all tasks are compared to state-of-the-
art methods showing that the DRUGAN denoiser can help to improve the
perceptual quality of the result. Quantitative and qualitative results are
given in Chapter 4 and Appendix A.
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The source code is available online.

https://github.com/HedgehogCode/denoising-gan
Training code for the DRUGAN denoiser and other denoiser models using
TensorFlow 2 [Ten21].

https://github.com/HedgehogCode/deep-plug-and-play-prior
Implementation of the DMSP and HQS algorithm using TensorFlow 2.

https://github.com/HedgehogCode/masters-thesis-evaluation
Evaluation code.

https://github.com/HedgehogCode/denoising-gan
https://github.com/HedgehogCode/deep-plug-and-play-prior
https://github.com/HedgehogCode/masters-thesis-evaluation


Chapter 2

Related Work

This chapter will look at noteworthy publications related to this work. First, we
will summarize work on image priors. Next, we will look at other image reconstruc-
tion methods for denoising, deblurring, single image super-resolution, multi-frame
super-resolution, and inpainting. Finally, we will sum up work on Generative
Adversarial Networks (GANs).

2.1 Image Priors
Classical choices of regularization include the L2 and L1 norm [Mit+09; Cha04].
For a reference of classical image priors, we refer to Shaham and Michaeli [SM16].
They explored a range of different image priors and demonstrated a method to
visualize them.

There is quite some work on using a denoiser as an image prior for image
restoration tasks. A BM3D denoiser [Dab+07] was used for image deblurring
in [DKE10; DKE12]. In [EK15], the authors used a BM3D denoiser for single
image super-resolution. A framework for image reconstruction using an arbitrary
denoising model has been introduced by Venkatakrishnan et al. [VBW13]. They
used the ADMM technique [Boy10] for the optimization. Brifman et al. [BRE16]
applied this framework to single image super-resolution. Chan et al. [CWE17]
explored the convergence of the framework and applied it to single image super-
resolution and single-photon imaging. FlexISP [Hei+14] is a framework for camera
image processing that uses the primal-dual algorithm [CP10]. The authors eval-
uated the framework for multiple tasks using different denoisers. Half Quadratic
Splitting (HQS) was used by Zoran et al. [ZW11] for denoising, deblurring, and
inpainting.

The natural next step is using deep-learning-based denoisers with the intro-
duced frameworks. Zhang et al. [Zha+17b] used the HQS method for deblurring

7
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and single image super-resolution. They made use of a simple DnCNN [Zha+17a]
using dilated convolutions [YK16], batch normalization [IS15], and rectified linear
units [NH10]. Since the HQS algorithm requires denoisers for different noise levels,
they trained multiple networks. Later, Zhang et al. [Zha+21a] improved their work
using another denoiser. They introduced DRUNet, a powerful denoiser based on
the U-Net architecture [RFB15] with residual blocks [He+16]. DRUNet is trained
on a range of noise levels by adding a noise-level-map input. Therefore, only one
model is required when applying the HQS method. Bigdeli et al. [Big+17] used
the Bayes’ risk formulation from [JRF17] and a denoiser to compute the gradient
for the prior. They used a simple network architecture for their denoiser.

Lempitsky et al. [LVU18] followed another approach. They used a randomly
initialized network as a prior. The network architecture already forces the image
to look realistic.

2.2 Image Reconstruction
This section will list relevant work related to the image reconstruction tasks han-
dled in this work. The image degradation models are explained in the introduction
(Chapter 1).

2.2.1 Denoising
Fan et al. [Fan+19] gave a brief overview of image denoising techniques. Clas-
sical methods work on the spatial domain and include filtering with different
kernels and variational methods with different regularizations. Transform tech-
niques first transform the image into another domain (like the wavelet trans-
form [Mal89]) to apply the denoising technique. One powerful and prominent
example is BM3D [Dab+07]. Recently, CNN-based methods have achieved out-
standing performance. Zhang et al. [Zha+17a] have introduced DnCNN, a sim-
ple convolutional neural network with batch-normalization and a global residual.
Later, he improved with FFDNet [ZZZ18], which has a noise-level map input and
works on downsampled sub-images. He recently developed an architecture update
to FFDNet, called DRUNet [Zha+21a]. DRUNet uses an architecture based on
U-Net [RFB15] but with residual blocks. To our knowledge, DRUNet is the best
denoiser currently available for additive Gaussian noise in terms of PSNR. In this
work, we will make use of the DRUNet architecture.

Other network architectures have been introduced by Mao et al. [MSY16]
and Zhang et al. [Zha+21b]. Both used their architectures on multiple im-
age reconstruction tasks by retraining the network for the specific problem.
In [MSY16], skip connections were introduced between an encoding and decoding
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part. In [Zha+21b], the authors introduced residual dense blocks to boost the
network performance of RDN.

Brooks et al. [Bro+19] introduced a technique called “unprocessing” to work
with real camera image noise. Their pipeline allows them to generate training data
corresponding to raw sensor data. Chen et al. [Che+18] used a GAN to generate
noise patches that fit the noise distribution present in raw image data.

2.2.2 Deblurring
Mao et al. [MSY16] and Zhang et al. [Zha+21b] used their already mentioned
network architectures for deblurring by training the networks for specific blur
kernels. Both achieve good results, but their method is not flexible since the
network needs to be retrained for each kernel and noise level.

Xu et al. [Xu+14] defined DCNN and ODCNN for non-blind deblurring. Their
network architecture is based on the singular value decomposition of the pseudo
inverse blur kernel. ODCNN adds a simple CNN with two hidden layers to reject
outliers on top of DCNN. Again, their method has to be retrained for each blur
kernel. However, they use the SVD of the pseudo inverse blur kernel to initialize
the network parameters.

Kruse et al. [KRS17] used convolutional neural networks to replace parts of
FFT-based deconvolution. Their method does not have to be retrained for new
blur kernels or noise levels.

Most recent approaches try to solve the much more challenging task of blind
deblurring. Nah et al. [NKL17] used a deep convolutional neural network that op-
erates on multiple scales. Kupyn et al. [Kup+18] used the GAN framework to train
DeblurGAN. In [Kup+19], they improved DeblurGAN and called it DeblurGAN-
v2.

2.2.3 Single Image Super-Resolution
Nasrollahi and Moeslund created a survey of image super-resolution meth-
ods [NM14]. They classified methods based on the domain they operate in
(frequency/spatial) and the number of low-resolution images used (single image/-
multiple images). Most methods have been developed in the spatial domain. We
will look at a few recent deep-learning-based methods for single image super-
resolution.

Dong et al. [Don+16] introduced SRCNN, a simple convolutions network with
two hidden layers for single image super-resolution. While Dong et al. did not see
improvements when increasing the number of layers, Kim et al. [KLL16] achieved
better results with a 20 layer CNN called VDSR. They added a global residual,
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gradient clipping, and high learning rates to ensure convergence with this many lay-
ers. Ledig et al. [Led+17] improved the network architecture using ResNet [He+16]
for SRResNet. Lim et al. [Lim+17] simplified the architecture of SRResNet and
improved the PSNR values of the super-resolved images with EDSR. They also
introduced a multiscale super-resolution network called MDSR that reuses most
weights for different scales. While they only focused on PSNR performance, Ledig
et al. [Led+17] used their SRResNet in the GAN framework to improve the per-
ceptual quality of the super-resolved images. They call SRResNet trained with
an adversarial loss SRGAN. It cannot compete in PSNR but achieves visually
more pleasing results. Wang et al. [Wan+19b] built upon SRGAN for ESRGAN.
They improved the network architecture of the generator and used a relativistic
discriminator [Jol19].

2.2.4 Multi-Frame Super-Resolution

Again, we refer to the survey by Nasrollahi and Moeslund [NM14]. They cat-
egorized multi-frame super-resolution methods. Methods that use the imaging
model to simulate low-resolution observations, compare them with the actual ob-
servations, and project the error back to the high-resolution grid to refine the
high-resolution estimate, are called iterative back projection (IBP) methods. Di-
rect methods warp the low-resolution frames to a high-resolution grid and combine
them directly, which gives them a speed advantage over IBP methods. Probability-
based methods try to find an ML solution or a MAP estimate of the high-resolution
image.

Video Super-Resolution There are many deep-learning-based methods for
video super-resolution.

Kappeler et al. [Kap+16] introduced the first CNN for video super-resolution
called VSRnet. They used optical flow estimation and backward warping to
compensate for motion. The motion compensation was improved by Tao et
al. [Tao+17], who introduced a “sub-pixel motion compensation” layer. Jo et
al. [Jo+18] went in another direction by avoiding explicit motion compensation.
Wang et al. [Wan+19a] introduced EDVR and achieved very competitive results.
They aligned frames using deformable convolutions [Dai+17] in a first module
and used attention to find important features in the spatial and temporal axis in
a second module. Recently, Chan et al. [Cha+21] tried to find a strong baseline
for VSR. They developed BasicVSR and IconVSR, which are slightly better than
EDVR but significantly less complicated and faster.
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Light Field Super-Resolution For light field super-resolution, how the indi-
vidual images relate to each other is well-defined. Therefore, only a depth map is
required to register the images. Wanner and Goldlücke [WG12; WG14] did spatial
and angular super-resolution using a variational framework. Their framework uses
the total variation prior, is very flexible, and can synthesize super-resolved novel
views. Yoon et al. [Yoo+15] first used CNNs for spatial and angular light field
super-resolution. They significantly outperform classical methods.

Multiple improvements of CNN-based light field super-resolution have been
made. Wang et al. [Wan+18] introduced LFNet for spatial light field super-
resolution. They upscaled the horizontal and vertical center slice (the vertical/hor-
izontal angle is fixed) separately and combined them later. To upscale the 3D
slices, they used a bidirectional recurrent neural network with a novel “Implicit
Multi-scale Fusion” (IMsF) layer. They demonstrated that their complex archi-
tecture achieves excellent results on multiple light fields. Zhang et al. [ZLS19]
used the horizontal and vertical angular slices and additionally the diagonal slices.
Their network resLF uses residual blocks to extract features from the four different
slices. The features are then combined and upscaled to a high-resolution light field.
The presented results look very promising, beating LFNet and EDSR [Lim+17]
by a large margin. Jin et al. [Jin+20] finally used the whole light field for each
view. Their method consists of two modules. The first module extracts features
from each view and fuses them to upscale a reference view. The second module
regularizes the result using a CNN consisting of alternating spatial and angular
convolutions. Their method outperforms resLF.

2.2.5 Inpainting
Traditional approaches for digital image inpainting often try to continue the edge
of the missing region into the region preserving structure [Ber+00; Oli+01; DH18].
Texture can be reconstructed by replicating texture from another location in the
image [Ber+03].

There are multiple deep-learning-based methods. Pathak et al. [Pat+16] intro-
duced Context Encoders that learn how to reproduce an image region using the
surrounding context. Using an adversarial loss, they achieved sharper results for
large missing regions. They showed that Context Encoders learn valuable features
for classification, detection, and segmentation. Yang et al. [Yan+17] introduced
a multiscale framework to improve the image resolution when inpainting. They
reconstructed high-resolution texture by finding patches in the image using deep
features. Iizuka et al. [ISI17] used two discriminators to train a model for inpaint-
ing. One of the discriminators checks if the inpainted image is globally consistent,
while the other checks that local patches are reasonable. The network was trained
to fool both, generating images with a realistic global structure and local texture.
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Yu et al. [Yu+18] used a similar approach but introduced several improvements.
Their main contribution is to use a contextual attention layer that learns how to
borrow features from known parts of the image. Liu et al. [Liu+18] introduced
partial convolutions that take the mask into account. They showed that this helps
for inpainting if the holes are irregular.

2.3 Generative Adversarial Networks
The GAN framework was introduced by Goodfellow et al. [Goo+14]. They in-
troduced a learning scheme where a discriminator model and a generator model
are trained against each other. The goal of the discriminator is to differentiate
between training examples of a data distribution from examples generated by the
generator. The generator’s goal is to fool the discriminator with the generated
examples. This way, the generator learns to reproduce the data distribution. Us-
ing powerful models for the generator and discriminator and a large enough set of
training samples, one can learn to generate adversarial samples of complex distri-
butions. Goodfellow et al. demonstrated GANs on small images of numbers, faces,
and objects.

Many papers showed the capability of the GAN framework for generating im-
ages. Radford et al. [RMC16] defined deep convolutional network architectures for
the generator and discriminator. They demonstrated the architectures on slightly
larger natural images of bedrooms, faces, and general objects. Additionally, they
explored interpolation and vector arithmetic in the latent space and the features
learned by the models. Arjovsky et al. [ACB17] improved GAN training with an
algorithm named Wasserstein GAN (WGAN), stabilizing the training procedure.
They used a critic instead of a discriminator that does not discriminate between
real and fake samples but outputs a score on how real the sample is. Therefore,
the critic cannot saturate and gives clean gradients for the generator. WGAN-
GP [Gul+17] further improves the training stability by adapting the clipping of
the critic weights. Jolicoeur-Martineau [Jol19] introduced another loss for the
GAN framework using a relativistic discriminator. She called the models Rela-
tivistic GANs (RGANs) and Relativistic average GANs (RaGANs) and showed
that they generate even higher quality images than WGAN-GP. RaGANs will be
used in this work. The relativistic losses will be described in section 3.4.2.

Using progressive growing of GANs, Karras et al. [Kar+18] managed to gen-
erate very realistic high-resolution images. Later, they introduced a style-based
generator architecture [KLA19] that generates even better images and controls the
style.

For single image super-resolution, Ledig et al. [Led+17] introduced SRGAN.
They used a residual convolutional network architecture for upscaling as a gener-
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ator. This generator was trained to upscale low-resolution input images to high-
resolution images using matched training data. They combined a content loss
(MSE loss or VGG loss) with the adversarial loss. The adversarial loss improves
the visual quality of the super-resolved images.

There is little work on denoising using GANs. Wang et al. [Wan+20] de-
scribed a denoising GAN. However, they did not explain the essential details of
the “smoothing loss” they use (the naming suggests something which goes against
the idea of reproducing sharp details) and do not provide source code. They neither
compared their method with state-of-the-art nor provided quantitative results that
could be compared. Yan and Wang [YW17] used a DCGAN to do super-resolution,
denoising, and deblurring. Their results do not look promising, and they do not
provide source code.





Chapter 3

Method

The following two sections will look at two approaches to solve inverse reconstruc-
tion problems. Both methods use a denoising model that acts as a prior. Sec-
tion 3.3 lists the details for four reconstruction problems using these approaches.
A better denoising model based on the GAN framework to improve the algorithms
is described in Section 3.4.

3.1 Deep Mean-Shift Priors (DMSP)
Bigdeli et al. [Big+17] did not directly optimize the MAP estimate but optimized
an extension. They formulated a prior representing a smoothed version of the
natural image distribution. The optimization problem can be solved using gradient
descent, and the gradient of the prior can be computed using a learned denoiser.
We will now follow the basics of the mathematical foundation of their method as
described in their work.

As already mentioned, we do not solve the inverse problem via a maximum
a posterior estimate. Instead, we will use a utility function G and maximize its
posterior expectation. This gives us the Bayes estimator x.

Ex̃[G(x̃, x)] =
∫
G(x̃, x)p(y|x̃)p(x̃) dx̃ (3.1)

The utility function (defined later) favors the arguments to be similar. An x
that maximizes Ex̃[G(x̃, x)] is a good estimator because many x̃ close to x have a
high probability of being the clean image for the observation y.

We define the prior on a smoothed data distribution.

p′(x) := Eη[p(x+ η)] =
∫
gσ(η)p(x+ η) dη, (3.2)

15
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where η ∼ N (0, σ2) and gσ is a Gaussian kernel with the same distribution. Later,
we will see that the gradient of the logarithm of this data distribution can be easily
computed using a learned denoiser.

The same Gaussian kernel will now be used to define the utility function G.

G(x̃, x) := gσ(x̃− x)p
′(x)
p(x̃) (3.3)

Using the utility function G and smooth data distribution p′, we can rewrite
the posterior expectation of G.

Ex̃[G(x̃, x)] =
∫
G(x̃, x)p(y|x̃)p(x̃) dx̃

=
∫
gσ(x̃− x)p

′(x)
p(x̃) p(y|x̃)p(x̃) dx̃ |eq. (3.3)

=
∫
gσ(x̃− x)p′(x)p(y|x̃) dx̃

=
∫
gσ(x̃− x)p(y|x̃)

∫
gσ(η)p(x+ η) dηdx̃ |eq. (3.2)

=
∫
gσ(ε)p(y|x+ ε)

∫
gσ(η)p(x+ η) dηdε |Subst. ε = x− x̃

Note that we only have the prior on the smoothed data distribution left, which we
can optimize using a learned denoiser.

The objective is given by maximizing the logarithm of posterior expectation.
Jensen’s inequality is used to split the term into a data term and a prior term.

logEx̃[G(x̃, x)] = log
(∫

gσ(ε)p(y|x+ ε)
∫
gσ(η)p(x+ η) dηdε

)
≥
∫
gσ(ε) log

(
p(y|x+ ε)

∫
gσ(η)p(x+ η) dη

)
dε |Jensen’s ineq.

=
∫
gσ(ε) log p(y|x+ ε) dε︸ ︷︷ ︸

data(x)

+ log
∫
gσ(η)p(x+ η) dη︸ ︷︷ ︸

prior(x)

We will maximize the logarithm of the posterior expectation using gradient
descent with momentum. The estimate x̂ is given by

x̂ = argmax
x

[logEx̃[G(x̃, x)]]

= argmax
x

[data(x) + prior(x)] .

Therefore, we get the update steps as shown in Algorithm 1. The data gradient
∇ data(x) depends on the reconstruction task and will be defined in Section 3.3.
The stochastic prior gradient ∇ priorsL(x) will be defined in the following section.
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Algorithm 1: Gradient descent for DMSP [Big+17].
Data: Observation y, Learning rate α, Momentum µ, Iterations T
Result: Estimate x̂
initialize x0
initialize velocity v with 0
for t← 1 to T do

ut ← −∇ data(xt−1)−∇ priorsL(xt−1) // Compute the gradient
v ← µv − αut // Update the velocity
xt ← xt + v // Update the estimate

x̂← xT

3.1.1 Prior Gradient
A denoising autoencoder (DAE) GDAE

σ is a model with parameters w that maps
from images to images of the same size. Usually, the parameters w are optimized
to minimize “mean-squared error” (MSE) between the output of the DAE given
an input that is corrupted by additive white Gaussian noise and the uncorrupted
input.

LMSE := Eη
[(
x̃− GDAE

σ (x̃+ η)
)2
]
, (3.4)

with η ∼ N (0, σ2).
Alain and Bengio [AB14] showed (in Theorem 1) that a perfect DAE has the

output

GDAE
σ (x) = Eη[p(x− η)(x− η)]

Eη[p(x− η)]

= Eη[p(x− η)x]− Eη[p(x− η)η]
Eη[p(x− η)]

= x− Eη[p(x− η)η]
Eη[p(x− η)] . (3.5)

They showed that this is valid for every kind of DAE, assuming that it has enough
capacity and that the parameters are optimized to minimize the MSE over samples
x̃ of the natural image manifold. Their proof considers additive white Gaussian
noise, but other noise could also be used. On the other hand, we will need η to be
Gaussian noise for the next steps.
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Using the continuous formulation of Equation (3.5), we can reformulate the
output of a perfect DAE to include the gradient of our prior.

GDAE
σ (x) = x−

∫
gσ(η)p(x− η)η dη∫
gσ(η)p(x− η) dη

= x+ σ2 ∫ ∇gσ(η)p(x− η) dη∫
gσ(η)p(x− η) dη |Gaussian derivative

= x+ σ2∇
∫
gσ(η)p(x− η) dη∫

gσ(η)p(x− η) dη |Leibniz rule

= x+ σ2∇ log
∫
gσ(η)p(x− η) dη︸ ︷︷ ︸

prior(x)

Therefore, we can compute the gradient of the prior using a DAE.

∇ prior(x) = 1
σ2 (GDAE

σ (x)− x)

We now have a simple way of computing the gradient for a valuable image
prior.

However, in practice, a DAE is not very effective for images close to the mani-
fold of noise-free images. It overfits to images with noise.

Therefore, we rewrite our prior and define a lower bound.

prior(x) = log
∫
gσ(η)p(x+ η)dη

= log
∫
gσ2(η2)

∫
gσ1(η1)p(x+ η1 + η2)dη1dη2 |σ2

1 + σ2
2 = σ2

≥
∫
gσ2(η2) log

[∫
gσ1(η1)p(x+ η1 + η2)dη1

]
dη2 |Jensen’s ineq.

=
∫
gσ2(η2)

[
priorσ1(x+ η2)

]
dη2

=: priorL(x)

Using the new lower bound on the prior and σ1 = σ2 = σ/
√

2, we get the gradient

∇ priorL(x) =
∫
gσ/√

2(η2)
[
∇ priorσ/√

2(x+ η2)
]
dη2

= 2
σ2

∫
gσ/√

2(η2)
[
GDAE
σ/

√
2 (x+ η2)− (x+ η2)

]
dη2.
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We cannot compute the integral over η2. Instead, we use one noise sample
η2 ∼ N (0, σ2/2) during runtime, resulting in a stochastic gradient evaluation.

∇ priorsL(x) = 2
σ2

(
GDAE
σ/

√
2 (x+ η2)− x

)
Note that we apply the DAE on a noisy image with the noise distribution it

was trained on for this approximation of the prior gradient. Therefore, the DAE
is as effective as it can be.

The theory for this gradient is only valid for a DAE trained with the MSE loss
because this is the assumption in Equation (3.5). However, later we will introduce
a denoiser trained with other losses. While this does not fit the theory, we will
show empirically that this denoiser can be used. It produces better results than
the denoiser trained with the MSE loss.

3.2 Half Quadratic Splitting (HQS)
The HQS algorithm [GY95] is a method to maximize the log-likelihood of a MAP
estimate. Zhang et al. [Zha+17b; Zha+21a] used the HQS algorithm for image
reconstruction using a denoiser as a prior. In the following section, we will replicate
their method.

Remember the energy function (Equation (1.3)) from the introduction.

x̂ = argmin
x

[
1

2σ2
n

‖y −Hx‖2 + λΦ(x)
]

To split the data term from the regularization term, we use an auxiliary variable
z which must be equal to x. We get the constrained problem

x̂ = argmin
x

[
1

2σ2
n

‖y −Hx‖2 + λΦ(z)
]

s.t. z = x.

Using the HQS method, we ensure the constraint is satisfied by adding the
term µ/2 ‖x− z‖2 with a large penalty parameter µ.

x̂ = argmin
x

[
1

2σ2
n

‖y −Hx‖2 + λΦ(z) + µ

2 ‖x− z‖
2
]

(3.6)

Since the data and prior terms are decoupled now, they can be solved separately
in an iterative scheme.

xt = argmin
x

[
1

2σ2
n

‖y −Hx‖2 + µt
2 ‖x− zt−1‖2

]
(3.7)

zt = argmin
z

[
λΦ(z) + µt

2 ‖xt − z‖
2
]

(3.8)
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The penalty parameter µt is increased with each iteration.
Equation (3.7) only contains the data term and depends on the specific recon-

struction problem. We will look at the solution for this part in Section 3.3.
Equation (3.8) only contains the prior term and can be solved using a learned

Gaussian denoiser Gσ [Zha+21a].

zt = argmin
z

[
λΦ(z) + µt

2 ‖xt − z‖
2
]

= argmin
z

 1

2(
√
λ/µt)

2 ‖xt − z‖
2 + Φ(z)


= G√

λ/µt
(xt)

Note that because µ is a parameter that changes in every iteration, our denoiser
needs to handle a range of noise levels (or we would need multiple denoisers).

Following [Zha+21a], we set µt implicitly by specifying the standard deviation
of the denoiser σt =

√
λ/µt in each iteration and fixing λ = 0.23. This gives us

µt = 0.23/σ2
t . For µ to increase, σt needs to decrease. We start with σ1 = 0.2 (0.2×

the range of the pixel values) and decrease the value logarithmically to the noise
value in the last iteration σT = σn.

Algorithm 2: HQS algorithm for image restoration [Zha+21a].
Data: Observation y, Iterations T , Denoiser noise levels σt
Result: Estimate x̂
initialize z0
for t← 1 to T do

xt ← argminx
[

1
2σ2
n
‖y −Hx‖2 + µt

2 ‖x− zt−1‖2
]

// Data solution
yt ← Gσt(xt) // Prior solution

x̂← xT

3.3 Reconstruction Problems
We will now look at how to solve the data part of the optimization for four different
reconstruction problems. Remember the classical degradation model from the
introduction.

y = Hχ+ n, n ∼ N (0, σ2
n)
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For DMSP, we define data gradient ∇ data(x), and for HQS, we solve Equa-
tion (3.7). Section 3.3.1 describes non-blind deblurring/deconvolution. Single
image super-resolution and multi-frame super-resolution are described in Sec-
tion 3.3.2 and Section 3.3.3, respectively. Finally, Section 3.3.4 describes the data
solution for inpainting.

3.3.1 Deblurring
For deblurring/deconvolution, H is a matrix representing the convolution with
the blur kernel k. For simplicity, we will focus on non-blind deconvolution, which
means that the blur kernel k and the standard deviation of the additive Gaussian
noise σn are known. Bigdeli et al. [Big+17] showed that the DMSP method is also
applicable to noise- and kernel-blind deconvolution.

DMSP We get the data gradient

∇ data(x) = − 1
σ2
n

k̄ ∗ (k ∗ x− y),

where k̄ is the flipped kernel.

HQS If circular boundary conditions are used for the convolution, there is a
closed-form solution to Equation (3.7) [Zha+21a].

xt = f̂−1

 f̂(k)f̂(y) + ρkf̂(zt−1)
f̂(k)f̂(k) + ρk

 ,

where f̂(·) is the Fast Fourier Transform, · is the complex conjugate, and ρk :=
µkσ

2
n.

3.3.2 Single Image Super-Resolution
For single image super-resolutionH is a downscaling operation. Usually, it consists
of two steps. First, the image is blurred with a blur kernel k. Next, the blurred
image is downsampled by choosing every sth pixel for a scaling factor s (noted by
↓s). We will not add any noise σn = 0. Therefore, we have the degradation model
y = (k ∗ χ) ↓s.
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Another option for the downscaling operation is the well-known bicubic degra-
dation (as done by the Matlab imresize). Bicubic downscaling can only be ap-
proximated using blur kernel and downsampling [ZGT20]. Therefore, we will use
the slightly adapted degradation model y = χ ↓sbic, where ↓sbic denotes the bicubic
downscaling operation.

DMSP The data gradient is

∇ data(x) = −k̄ ∗ ((k ∗ x) ↓s −y) ↑s .

For the case with bicubic downscaling, we get the gradient

∇ data(x) = −(x ↓sbic −y) ↑sbic .

Note that ↑s denotes upsampling without interpolation, and ↑sbic denotes bicubic
upscaling.

Since no noise is added to the degraded image, the data term has no natural
weighting. We will use the value wt = w/

√
t to weight the prior gradient and

decrease its influence in later iterations. The value of wt starts with w = 10−3 and
decreases with every iteration.

HQS We solve Equation (3.7) using a closed-form solution similar to the non-
blind deblurring task [Zha+21a]. We get

xt = f̂−1

 1
ρk

d− f̂(k)�s (f̂(k)d) ⇓s

(f̂(k)f̂(k)) ⇓s +ρk

 ,
with

d = f̂(k)f̂(y ↑s) + ρkf̂(zt−1).

⇓s averages the s × s regions of the image. �s is a kind of element-wise multi-
plication. Each value on the left-hand side is multiplied with the value on the
right-hand side corresponding to the s× s region.

The above approach could be used with the approximated blur kernel for bicu-
bic downscaling. However, the bicubic case can also be solved using an iterative
approach by repeating the following computation five times [Zha+17b].

xt = zt−1 − α(y − zt−1 ↓sbic) ↑sbic

The step size α is set to 1.5.
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3.3.3 Multi-Frame Super-Resolution
For multi-frame super-resolution (MFSR), we do not have only one degraded ob-
servation y However, we have multiple observations y1, . . . , yN . The degradation
operations consist of a warping operation Wi followed by a blur operation with
the kernel k and a downsampling operation ↓s [Mit+09]. Therefore, we get the
degradation model

yi = (k ∗Wiχ) ↓s +ni, ni ∼ N (0, σ2
n), i = 1 . . . N.

Remember the illustration of the multi-frame super-resolution model in Figure 1.3
in the introduction.

We get the following data sub-problem for the HQS algorithm.

xt = argmin
x

[
1

2σ2
n

N∑
i=1
‖(k ∗Wix) ↓s −yi‖2 + µt

2 ‖x− zt−1‖2
]

This can easily be solved by an iterative back-projection (IBP) scheme [NM14;
IP91; Mit+09]. The idea is to simulate the image degradation process (see Fig-
ure 1.3) on the estimated high-resolution image. Suppose the high-resolution esti-
mation is coherent with the low-resolution observations. In that case, the simula-
tion result should be equal to the observations. The error between the simulated
low-resolution image and the observation is computed and back-projected to refine
the estimate. This is done by up-sampling the error, undoing the blur, and warping
the error back to the reference. Formally, this results in the iterative scheme

xt = zt−1 + α

[
N∑
i=1

W T
i

(
k̄ ∗ ((yi − (k ∗Wizt−1) ↓s) ↑s)

)]
.

W T
i is the warping operation from the domain of the ith image to the domain of

the reference image. Note that for bicubic downscaling, the blur operations vanish.
Five iterations with α = 0.2 are executed for blur downscaling, and for bicubic

downscaling, only one iteration with α = 1 is executed.

Registration

A critical element of this algorithm is warping the images to a reference frame.
The details of the warping operation are usually unknown. Therefore, we have
to estimate a good Wi for each frame. This can be done by computing the pixel
displacement ui,k between the images yi and yk. Without occlusion, noise, or
illumination changes, the pixel displacement would fulfill the following condition.

yi(ϕ) = yk(ϕ+ ui,k(ϕ))
We can see that the pixel displacement defines a warping which we can use.
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Videos For videos, ui,k is the optical flow. There are many methods to esti-
mate the optical flow. Classically they are divided into local methods like Lukas-
Kanade [LK81] and global methods like Horn-Schunk [HS81]. For larger pixel
displacements, a coarse-to-fine scheme can be used. The finer image is warped
such that the magnitude of the flow on this resolution level is not too high using
this coarse optical flow [Bro+04]. In this work, we will use pyflow [Pat21]. Pyflow
is a wrapper for Liu’s C++ optical flow library [Liu09]. Liu’s algorithm is based
on [Bro+04; BWS05]. We use pyflow to compute the displacements between the
reference frame and nine other frames by inputting them directly into the library.
Larger displacements between nonconsecutive frames are handled sufficiently well
by the coarse-to-fine scheme.

Light fields For light fields, only a disparity map has to be estimated. In this
work, we will use LFattNet [Tsa+20], which is a CNN-based method. They use
attention to select important views from the entire light field and achieve top-of-
the-line results in the 4D Light Field Benchmark [Hon+17; Joh+17]. It is easy to
integrate LFattNet because the authors provide source code and model weights.

Note that the super-resolution scheme from above could be improved by con-
sidering occlusion as done in [WG12]. We do not implement this improvement and
leave it for future work.

3.3.4 Inpainting
For inpainting, H applies a mask to the image. We do not add noise to the image
(σn = 0).

DMSP The data gradient is

∇ data(x) = −(Hx− y).

We use the weight wt as in the single image super-resolution case with w = 0.2
to weight the prior term. Also, since we are certain about the non-masked values
of the image, we set them to the values of x after the last iteration. With the
decreasing weight of the prior, they converge to these values, but they might not
be there when the last iteration ends.

HQS Solving Equation (3.7), we get

xt = Hy +H−1zt−1,
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where H−1 is the inverse mask, masking all and only the values that H does not
mask.

3.4 Denoising GANs
The previous sections show that denoising models can act as a prior for various in-
verse image reconstruction problems. To improve the reconstruction performance,
we try to train a better denoiser. This section describes the main contribution of
this work—the DRUGAN denoiser based on the GAN framework [Goo+14].

In our case, the generator G of the GAN does not generate samples based on a
random input noise but denoises noisy images z. The Discriminator D predicts if
the sample is a clean image drawn from the data distribution or a denoised image
G(z).

The following section describes the architecture of the generator, which is just a
denoising network. After that, Section 3.4.2 describes how this denoising network
is incorporated in the GAN framework to improve the visual quality of the denoised
images.

3.4.1 Denoising Autoencoder
Since our generator network is just a denoising network, we will explore the archi-
tecture of the generator by training different approaches using only the MSE loss
(See Equation (3.4)).

DCNN: Denoising CNN As a base model, we use the architecture of DnCNN
by Zhang et al. [Zha+17a] with 19 convolutional layers as displayed in Figure 3.1a.
This model has around 630K trainable parameters.

DRCNN: Denoising Residual CNN The first modification is to use internal
residuals. The input of each block is the sum of the input and the output of
the previous block. This modification does not increase the number of trainable
parameters.

DUNet: Denoising U-Net U-Net is defined by Ronneberger et al. [RFB15]
and uses an encoder-decoder architecture. In the encoder part, the image reso-
lution is decreased by using max-pooling. In the decoder part, the resolution is
increased using transpose convolutions. A skip connection between the encoder
part of a resolution and the decoder part of the equal resolution concatenates the
higher resolution features to the upscaled decoded features. We use a U-Net with
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Figure 3.1: Network architectures of the denoiser

four resolution levels and 64 filters for the first resolution level, resulting in a model
with around 8.6M trainable parameters.

DRUNet: Denoising Residual U-Net Zhang et al. [Zha+21a] defined the
DRUNet architecture, which is a U-Net with residual blocks (note that using
residual block in a U-Net is not a new idea [ZLW18; Ven+18]). Figure 3.1b shows
the precise architecture.

They train the DRUNet on a range of noise levels. The noise level of the input
is provided by concatenating the image with the noise map. This is useful for the
HQS algorithm, which relies on denoisers for different noise levels. Models trained
on a range of noise levels will be denoted by a subscript showing the range (e.g.,
DRUNetσ1...σ2).

Training Details All models were trained for 4M steps using the Adam opti-
mizer [KB17] with a learning rate of 10−4. Each batch consisted of 16 random
crops of size 96×96. The simple models were trained on the DIV2K training
dataset [AT17]. Later models were trained on the DIV2K dataset, the Imagenette
dataset [How21], the Waterloo exploration dataset [Ma+17], and the Flickr2K
dataset [Lim+17] combined. Models trained on multiple datasets will be labeled
with a “+” in the superscript of the model name. If the validation PSNR on the



3.4. DENOISING GANS 27

DIV2K validation dataset did not increase for 100 steps, the learning rate was
decreased by a factor of 0.2.

3.4.2 Generative Adversarial Networks
Embedding the denoising network into a GAN framework can improve the denois-
ing performance further. A discriminator will not help increase the PSNR of the
denoised images but will improve the visual quality.

The denoiser from the previous subsection was trained using the mean-squared
error loss. This loss corresponds directly to the PSNR metric. However, it does
not correspond well to the visual quality of an image. Other losses have been used
to overcome this issue. The mean-absolute error is more robust against outliers
and sometimes considered a better candidate [Zha+21a; Wan+19b].

LMAE := E [|x− Gσ(x+ η)|] (3.9)

Others have used a VGG19 model to create a perceptual loss that correlates
closer to the human visual system [JAF16; Led+17; Wan+19b]. The idea is that
the VGG19 model, trained to classify natural images, extracts features similar to
the features extracted by a human brain. Comparing these features of two different
images is a better measure of how similar the images appear to a human.

LVGGkl := E
[
(VGGk,l(x)− VGGk,l(Gσ(x+ η)))2

]
, (3.10)

where VGGk,l(x) is the feature map of a VGG-19 [SZ15] model after the lth con-
volutional layer before the kth max-pooling layer. In line with [Wan+19b], we will
use the features before activation.

While we will use the VGG54 loss as an additional loss, we will focus on
improving the model using the GAN framework [Goo+14]. The discriminator D is
trained to discriminate between images from the real non-noisy data distribution
x and the denoised images G(x+ η). The loss is defined a follows.

LD := −E [log(D(x))]− E [log(1−D(Gσ(x+ η)))] (3.11)

The generator is trained to fool the discriminator. Therefore, its adversarial
loss is defined to drive the discriminator to predict 1 for denoised images.

LADV−G := −E [log(D(Gσ(x+ η)))] . (3.12)

See Figures 3.2a and 3.2c for a visualization of the loss.
To force the generator to create images that are the denoised version of the

input image and not just some image that fools the discriminator, we combine the
GAN− G loss with the MAE and VGG54.

LG := λLADV−G + τLMAE + LVGG54 (3.13)



28 CHAPTER 3. METHOD

G

Dreal

noisy

1?

0?

fake

(a) Discriminator loss of a GAN

G

Dreal

noisy

more real
than fake?

less real
than real?

fake

(b) Discriminator loss of a RaGAN

G

Dreal

noisy

1?

fake

(c) Generator loss of a GAN

G

Dreal

noisy

less real
than fake?

more real
than real?

fake

(d) Generator loss of a RaGAN

Figure 3.2: Visualization of the losses of a GAN and a RaGAN

Relativistic Discriminator Jolicoeur-Martineau [Jol19] defined a relativistic
average GAN. Wang et al. [Wan+19b] used this and found that it helped improve
the visual quality of super-resolved images compared to a classical discriminator.
The relativistic discriminator is trained to predict higher values for clean data than
for denoised data and the other way around. We define the discriminator

DRa(a, b) := σ(C(a)− Eb [C(b)]), (3.14)

where C(·) is the CNN without activation function, σ is the sigmoid activation
function, and Eb[C(b)] is the mean over the whole mini-batch of samples. The
output is close to 1 if the CNN output for a is much higher than the average CNN
output for b. If it is much lower, the output is close to 0.

The loss of the relativistic discriminator is

LRaD := −E [log(DRa(x,Gσ(x+ η)))]− E [log(1−DRa(Gσ(x+ η), x))] . (3.15)

The adversarial loss of the generator using a relativistic discriminator is

LADV−RaG := −E [log(1−DRa(x,Gσ(x+ η)))]− E [log(DRa(Gσ(x+ η), x))] .
(3.16)
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Figure 3.3: Architecture of the discriminator model

The losses using a realistic average GAN are visualized in Figures 3.2b and 3.2d.
The discriminator is trained to predict that real images are more real than fake
ones in a batch. Fake images must be more fake than the real images in a batch.
The generator needs to fool the discriminator. Therefore, it has the opposite
objective.

Like the standard GAN, we combine the ADV− RaG loss with the MAE and
VGG54.

LRaG := λLADV−RaG + τLMAE + LVGG54 (3.17)

Training Details The generator was initialized with the weights of DRUNet+
0...0.2

after 700K steps, while the discriminator was initialized with random weights.
Analogously to the denoiser training, the discriminator and the generator were
optimized using the Adam optimizer with a learning rate of 10−4. Batches of 16
random crops of size 96×96 of the DIV2K, Imagenette, Waterloo exploration, and
Flickr2K dataset were used. For LRaG, we set λ = 0.5 and τ = 15. Training with
the standard GAN was too unstable. Therefore, we will not report results for the
standard GAN. A simple CNN architecture was used for the discriminator model
(see Figure 3.3).





Chapter 4

Results

In this chapter, we will evaluate the DRUGAN denoiser on the tasks of denoising,
non-blind deblurring, single image super-resolution, and inpainting. First, we will
look at the denoising performance of the DRUGAN itself and compare it with state-
of-the-art Gaussian denoisers. Next, we will use the DRUGAN denoiser for more
complex reconstruction tasks using the DMSP and HQS algorithms. Throughout
the evaluation, we will show results for intermediate models that do not use the
GAN framework and use various architectures described in the previous chapter.
The source code for all experiments executed can be found online at https://
github.com/HedgehogCode/masters-thesis-evaluation.

Note that we will use a value range from 0 to 1 for image points throughout
the work, and all experiments were conducted on RGB color images. Appendix A
lists more qualitative results and an exhaustive list of quantitative results.

Metrics

PSNR The Peak signal-to-noise ratio is a well-known measure for the quality of
a reconstructed image. The PSNR can be defined using the mean-squared
error (MSE) [Wik21].

PSNR(x, y) = 10 · log10

(
max_val2

MSE(x, y)

)

However, the MSE and, therefore, the PSNR is not a good measure for the
perceptual quality of an image [Zha+11; Zha+18]. Therefore, other metrics
have been developed.

SSIM Another prominent metric is the Structural Similarity Index [Wan+04].
By assessing structural information of the image, SSIM tries to be a better
perceptual metric.
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Additive noise σn 0.05 0.10 0.20
PSNR LPIPS PSNR LPIPS PSNR LPIPS

Model

CBM3D [MAF20] 34.45 0.0639 30.67 0.1543 27.36 0.2897
CDnCNN-B [Zha+17a] 34.77 0.0538 31.12 0.1132 27.82 0.2170
DnCNN (DMSP) [Big+17] 33.57 0.0477 — — — —
DRUNet (DPIR) [Zha+21a] 35.17 0.0472 31.56 0.0990 28.38 0.1841

DCNN0.05 34.64 0.0512 — — — —
DRCNN0.05 34.88 0.0498 — — — —
DUNet0.05 34.69 0.0508 — — — —
DUNet+

0.05 34.84 0.0503 — — — —
DRUNet+

0.05 33.62 0.0528 — — — —
DUNet+

0...0.2 34.82 0.0492 31.22 0.1033 28.01 0.1946
DRUNet+

0...0.2 35.11 0.0466 31.50 0.0972 28.31 0.1807

DRUGAN+
0...0.2 (λ = 0) 34.96 0.0280 31.31 0.0630 28.11 0.1265

DRUGAN+
0...0.2 34.54 0.0260 30.80 0.0575 27.48 0.1196

Table 4.1: Denoising results for the CBSD68 [Mar+] dataset. The best and the
second-best results are marked.

FSIM The feature similarity index for image quality assessment has been defined
by Zhang et al. [Zha+11]. It is based on features from the phase congruency
and the gradient magnitude. They showed that the FSIM is very consistent
with subjective image quality and, therefore, better suited as a perceptual
metric than PSNR or SSIM.

LPIPS More recently, Zhang et al. [Zha+18] explored features from deep neu-
ral network architectures for perceptual similarity. They found that deep
features across architectures and training datasets significantly outperform
other metrics (including PSNR, SSIM, and FSIM). We will use their LPIPS
metric with AlexNet [KSH12] and the default settings in version 0.1 (linear
layers on top of the trunk network, trained with human perceptual judg-
ments). Lower values of the LPIPS metric are better than higher values.

This chapter will quantify the results using the PSNR and LPIPS metrics. The
quantitative evaluation in Appendix A lists all four metrics.

4.1 Denoising
To evaluate the Denoising GAN’s performance and different denoiser architectures,
we ran the models for Gaussian denoising with different noise levels. The experi-
ment was conducted on the CBSD68 [Mar+] dataset, which is commonly used for
denoising evaluation. Appendix A lists additional results on other datasets.



4.1. DENOISING 33

(a) GT (b) Noisy (c) DRUNet+
0...0.2 (d) DRUGAN+

0...0.2

Figure 4.1: Denoising results on one image of the CBSD68 [Mar+] dataset with
a noise standard deviation of σn = 0.35

The results can be found in Table 4.1. We can see that all models are very
competitive with state-of-the-art Gaussian denoisers (DRUNet [Zha+21a]). The
architecture changes did not provide a substantial performance improvement for
models only trained for σn = 0.05. The PSNR values even dropped when switching
to a U-Net, which is most likely due to overfitting the training dataset. Using a
training dataset consisting of multiple large datasets (as described in the training
details in Section 3.4.1) improved the performance again.

When training the models for a range of noise levels, we can see that using
the more powerful architecture DRUNet improved the performance compared to
DUNet. DRUNet+

0...0.2 can be compared to the DRUNet trained by Zhang et
al. [Zha+21a] (called “DRUNet (DPIR)” in the table). We can see that their
implementation achieved the best PSNR values out of all methods. However, our
DRUNet implementation achieved slightly lower LPIPS values. This indicates that
they managed to optimize their model very well on the PSNR metric at the cost
of visual quality.

The best LPIPS values were achieved by the model introduced by this work—
the DRUGAN. It significantly improved the LPIPS metric and, therefore, the
visual quality for all noise levels. Both added losses, the perceptual loss (Equa-
tion (3.10)) and the adversarial loss from a relativistic discriminator (Equa-
tion (3.16)), contributed to this improvement. Setting λ = 0 (deactivating the
adversarial loss) already improved the LPIPS values. However, setting λ = 0.5
resulted in the best model trained. This shows that the relativistic discriminator
helps train a model with excellent visual quality.

A visual comparison between the DRUNet and DRUGAN can be found in
Figure 4.1. For visualization purposes, a noise level of σn = 0.35 was used—which
is outside the noise level range for both models. Luckily, the denoiser architecture
DRUNet generalizes very well for unseen noise levels, as stated in [Zha+21a]. We
can see that DRUGAN produced less smooth results than DRUNet. The result
for DRUGAN is perceptually closer to the ground truth, and the LPIPS value is
better compared to DRUNet. On the other hand, the PSNR value is better for
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Additive noise σn 0.01 0.02 0.03 0.04
PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS

Method

FDN [KRS17] 23.32 0.3265 23.81 0.4388 23.08 0.5058 22.64 0.5485
DMSP [Big+17] 26.63 0.2239 24.93 0.3920 23.85 0.4908 23.12 0.5540
DPIR [Zha+21a] 29.09 0.1700 26.64 0.3176 25.43 0.4057 24.67 0.4621

DMSP

DCNN0.05 27.85 0.1821 25.71 0.3525 24.48 0.4528 23.64 0.5209
DRCNN0.05 27.90 0.1810 25.75 0.3552 24.51 0.4568 23.69 0.5249
DUNet0.05 27.67 0.1895 25.39 0.3658 24.08 0.4700 23.24 0.5410
DRUNet+

0.05 26.01 0.2073 23.46 0.3899 22.34 0.4893 21.54 0.5544
DRUNet+

0...0.2 25.57 0.1589 24.92 0.2804 24.40 0.3688 23.90 0.4321
DRUGAN+

0...0.2 23.65 0.1800 22.26 0.2639 22.38 0.3335 22.71 0.3895

HQS DRUNet+
0...0.2 29.08 0.1559 26.66 0.3007 25.42 0.3946 24.61 0.4584

DRUGAN+
0...0.2 27.62 0.0725 25.38 0.1653 24.45 0.2496 23.88 0.3188

Table 4.2: Non-blind deblurring results for a subset of the BSDS500 [Arb+11]
validation dataset

DRUNet, which produces an over-smoothed image. This is an excellent example
that PSNR does not relate to visual quality but prohibits texture reconstruction
if accurate information is missing.

4.2 Deblurring
Table 4.2 shows the results for non-blind deblurring. Our implementations of
DMSP and HQS are compared to the results from FDN [KRS17], the orig-
inal DMSP paper [Big+17], and the HQS implementation by Zhang et al.
DPIR [Zha+21a].

We can see that the HQS algorithm worked much better for lower noise levels
and our results for the HQS algorithm are very comparable with the original
implementation. DPIR archived the best PSNR values for most noise levels, just as
for denoising. However, the LPIPS values were slightly worse. Using the DRUGAN
for HQS gave better LPIPS values for all noise levels and overall best results. This
shows that our powerful denoiser, which focuses more on visual quality than on
PSNR, can be used effectively for the HQS algorithm to improve the visual quality
of the reconstructed image.

Using the DMSP algorithm, the results are more complicated to interpret. For
models trained on a range of different noise levels, noise with a standard deviation
of 0.1 was added to the image for the stochastic evaluation of the prior gradient
(σ/√2 = 0.1). This works better for tasks with a higher noise level. See Figure 4.2
for a visualization of PSNR and LPIPS values when using different noise levels
for the prior gradient. We can see that lower values around 0.05 work well to get
good PSNR values. For higher noise in the image, the values should be slightly
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Figure 4.2: PSNR and LPIPS values for the DMSP non-blind deblurring algo-
rithm using different noise levels for the stochastic evaluation of the prior gradient.
The DRUNet+

0...0.2 model was used to get these values.

(a) GT (b) Degraded (c) DMSP [Big+17] (d) DPIR [Zha+21a]

(e) DMSP-DRUNet (f) DMSP-DRUGAN (g) HQS-DRUNet (h) HQS-DRUGAN

Figure 4.3: Non-blind deblurring results on the image “Baboon” of Set14. The
image was degraded using the first blur kernel of [Lev+09] and with a noise stan-
dard deviation of σn = 0.04.
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higher. However, good LPIPS values are achieved with higher noise levels used for
the prior. Again, for higher noise in the image, the noise levels used for the prior
should be higher. Judging from these graphs, 0.1 seems to be a good compromise
for different levels of noise focused on the LPIPS metric.

Therefore, DRUNet and DRUGAN got worse PSNR values for the DMSP
algorithm when σn < 0.03. The LPIPS values, on the other hand, were competitive
for all noise levels. DMSP with DRUNet even beat DPIR using the LPIPS metric.
Like for HQS, we got the best LPIPS values for DMSP and the second-best results
of all methods when using DRUGAN. Only for very little noise of σn = 0.01
DRUNet achieved a better LPIPS value.

Figure 4.3 provides a visual comparison between the different methods using
DRUNet and DRUGAN. We can see that DRUGAN reconstructed the texture of
fine details much better. The hair is less smoothed out but fine and sharp. This is
also reflected in the LPIPS value. DRUGAN achieved a much better visual quality
with both algorithms than the existing methods in Figures 4.3c and 4.3d.

In Section 3.1, the theory for the prior gradient of the DMSP algorithm required
the denoiser to be trained with the MSE loss. However, the results show that the
DMSP algorithm works well with the DRUGAN model. The better properties of
the DRUGAN model are reflected in the deblurring results. While the theoretical
explanation is still missing, the natural assumption that the DMSP algorithm
profits from better denoisers is valid.

4.3 Single Image Super-Resolution
Table 4.3 shows the results for single image super-resolution using bicubic down-
scaling. We can see that our implementation achieved PSNR values comparable to
the values reported in the DMSP paper [Big+17]. There is no significant difference
between the different models for DMSP, but DRCNN seems to do surprisingly well.
The HQS algorithm achieved similar results to the DMSP algorithm.

The end-to-end learned method EDSR [Lim+17] was evaluated for scaling fac-
tors 2, 3, and 4. ESRGAN [Wan+19b] was included for a scaling factor of 4. These
methods were evaluated using the BasicSR toolbox [Wan+21]. They were trained
specifically for the individual downscaling factors and bicubic downscaling by the
authors of the respective method. For these cases, they achieved much better
results than the model-based methods. Notably, the LPIPS result for ESRGAN
is better than all other methods by a large margin. ESRGAN was (similar to
DRUGAN) trained with a perceptual loss and an adversarial loss which explains
the remarkable result in the perceptual metric.

Figure 4.4 visualizes super-resolved images using bicubic downscaling. There
is no notable difference between the DMSP and HQS algorithm and the differ-
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(a) GT (b) Bicubic (c) EDSR [Lim+17] (d) ESRGAN [Wan+19b]

(e) DMSP-DRUNet (f) DMSP-DRUGAN (g) HQS-DRUNet (h) HQS-DRUGAN

Figure 4.4: Single image super-resolution results on the image “Comic” of Set14
with bicubic downscaling
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Scaling factor s 2 3 4 5
PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS

Method

Bicubic 31.81 0.1282 28.62 0.2543 26.70 0.3423 25.29 0.4052
EDSR [Lim+17] 36.03 0.0544 32.59 0.1231 30.47 0.1714 — —
ESRGAN [Wan+19b] — — — — 28.47 0.0752 — —

DMSP [Big+17] 35.16 — 31.38 — 29.16 — 27.38 —
IRCNN [Zha+17b] 35.07 — 31.26 — 29.01 — 27.13 —

DMSP

DCNN0.05 35.17 0.0627 31.56 0.1405 29.31 0.2029 27.32 0.2583
DRCNN0.05 35.30 0.0642 31.66 0.1434 29.46 0.2071 27.53 0.2626
DUNet0.05 34.79 0.0663 31.03 0.1480 29.03 0.2158 26.75 0.2788
DRUNet+

0.05 32.86 0.0718 28.86 0.1622 27.11 0.2387 25.24 0.3130
DRUNet+

0...0.2 34.97 0.0692 31.32 0.1586 29.16 0.2362 27.37 0.2978
DRUGAN+

0...0.2 35.07 0.0608 31.52 0.1411 28.44 0.2250 26.59 0.2889

HQS DRUNet+
0...0.2 34.97 0.0751 31.24 0.1598 29.12 0.2267 27.30 0.2838

DRUGAN+
0...0.2 34.35 0.0573 31.27 0.1370 28.83 0.2109 26.98 0.2748

Table 4.3: Single image super-resolution results for Set5 with bicubic downscal-
ing. The results for IRCNN and DMSP were copied from the DMSP paper.

ent denoising models. While the reconstructed images look sharper than bicubic
interpolation, they are still not very sharp. The end-to-end learned frameworks,
however, reconstructed a much sharper image. They introduced some artifacts,
but edges were reconstructed considerably better. Especially when not zoomed
in extremely close, the results of ESRGAN are more visually appealing than the
results of model-based methods.

We can see that our model-based methods can not compete with end-to-end
learned methods for bicubic downscaling. However, model-based methods have an
advantage over end-to-end frameworks. They can easily be adapted and applied
to different tasks. The end-to-end methods cannot handle different scales and
downscaling operations. On the other hand, model-based methods can be adapted
easily to handle these new tasks.

Table 4.4 shows results for super-resolution using blur downscaling with four
isotropic Gaussian kernels and four anisotropic Gaussian kernels. We can see that
EDSR failed horribly. This is not surprising because the model was not trained
for this downscaling operation. EDSR would need to be retrained (possibly for
each blur kernel) to get good results, which requires a vast amount of data, time,
and energy. Our methods using DMSP and HQS can handle blur downscaling and
achieve better results than DPIR. Here we can see again that DRUGAN generally
gets the best LPIPS values.

Figure 4.5 shows an example of super-resolution with blur downscaling. An
anisotropic Gaussian blur kernel was used, which blurred the stick extremely. Since
EDSR is unaware of the blur kernel, it failed to reconstruct the stick. The model-
based methods reconstructed the image well.
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(a) GT (b) Bicubic (c) EDSRbic [Lim+17] (d) DPIR [Zha+21a]

(e) DMSP-DRUNet (f) DMSP-DRUGAN (g) HQS-DRUNet (h) HQS-DRUGAN

Figure 4.5: Single image super-resolution results on an image of the
CBSD68 [Mar+] dataset with blur downscaling. An anisotropic Gaussian blur
kernel was used.
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Blur kernels isotropic anisotropic
Scaling factor s 2 3 2 3

PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS
Method

Bicubic 26.56 0.2649 24.35 0.3089 24.44 0.3843 23.47 0.3959
EDSRbic [Lim+17] 26.76 0.2251 23.97 0.2216 24.50 0.3730 23.59 0.3499
DPIR [Zha+21a] 34.13 0.1085 30.83 0.1735 32.21 0.1625 30.71 0.1931

DMSP

DCNN0.05 33.84 0.1064 31.18 0.1424 31.10 0.1738 30.68 0.1798
DRCNN0.05 33.93 0.1088 31.31 0.1455 31.26 0.1764 30.85 0.1824
DUNet0.05 33.51 0.1125 30.49 0.1506 30.70 0.1846 30.07 0.1915
DRUNet+

0.05 31.44 0.1213 28.37 0.1691 28.59 0.1988 27.81 0.2093
DRUNet+

0...0.2 33.84 0.1071 30.95 0.1522 31.33 0.1820 30.62 0.1934
DRUGAN+

0...0.2 34.09 0.0926 31.04 0.1363 31.59 0.1603 30.82 0.1723

HQS DRUNet+
0...0.2 34.31 0.0982 31.03 0.1617 32.51 0.1468 30.95 0.1760

DRUGAN+
0...0.2 33.62 0.0735 31.04 0.1375 32.28 0.1182 31.07 0.1523

Table 4.4: Single image super-resolution results for Set5 with blur downscaling.
Four isotropic and four anisotropic Gaussian kernels from [Zha+21a] were used.
Models marked with the subscript “bic” denote end-to-end frameworks trained for
bicubic downscaling.

4.4 Multi-Frame Super-Resolution
Evaluation of multi-frame super-resolution was done on the four videos of the
Vid4 [LS11] dataset and the light fields of the HCI [Hon+17] test set.

Table 4.5 shows the results of Vid4. The values reported were computed on the
center frame of the video. EDSR and ESRGAN are single image super-resolution
models. Therefore, they got only the center image of the video as input. EDVR
got seven frames as input because it was trained for this amount of frames. For
the HQS algorithm, nine frames were considered.

We can see that for bicubic downscaling end-to-end frameworks achieve the
best results. Although EDSR and ESRGAN had less information than the HQS
algorithm, they performed better. EDVR got the best PSNR value for ×4 up-
scaling with bicubic downscaling. However, ESRGAN got a lower LPIPS value,
indicating that the results are perceptually better.

The end-to-end learned methods failed again for blur downscaling because they
were not adapted to the task, which would be costly. The HQS algorithm was easy
to adapt and worked well. When comparing DRUNet and DRUGAN, we see that
DRUNet has higher PSNR values while DRUGAN wins the perceptual LPIPS
metric. This result is as expected.

Figure 4.6 shows the results of upscaling the center frame of the small “Bookcase
1” sequence. The original video has a resolution of 91×121 and was upscaled with
a scaling factor of 4. This is a blind problem because the blur kernel is unknown.
We can see that end-to-end learned methods produce undesirable visual artifacts
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Downscaling bicubic isotropic blur anisotropic blur
Scaling factor s 2 4 4 4

PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS
Method

Bicubic 26.8374 0.2175 22.2613 0.5066 20.0150 0.5324 20.0248 0.6008
EDSRbic [Lim+17] 30.5931 0.1036 23.9269 0.3253 19.0251 0.3780 20.0205 0.4945
ESRGANbic [Wan+19b] — — 21.6173 0.1903 17.2765 0.3681 19.5474 0.4312
EDVRbic [Wan+19a] — — 25.5342 0.2477 17.7089 0.3620 19.5031 0.4777

HQS DRUNet+
0...0.2 27.6802 0.1847 22.9253 0.4030 22.0766 0.3563 21.8919 0.4187

DRUGAN+
0...0.2 27.0509 0.1369 22.8392 0.3838 21.6548 0.3338 21.8897 0.3949

Table 4.5: Video super-resolution results for the Vid4 [LS11] dataset. For blur
downscaling four isotropic and four anisotropic Gaussian kernels from [Zha+21a]
were used. Models marked with the subscript “bic” denote end-to-end frameworks
trained for bicubic downscaling.

(a) Bicubic (b) EDSRbic [Lim+17] (c) ESRGANbic [Wan+19b]

(d) EDVRbic [Wan+19a] (e) HQS-DRUNet (f) HQS-DRUGAN

Figure 4.6: Video super-resolution results on the “Bookcase 1” video [Mil21].
The high-resolution image and the downscaling kernel are unknown. Each method
assumed bicubic downscaling.
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Downscaling bicubic isotropic blur anisotropic blur
Scaling factor s 2 4 4 4

PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS
Method

Bicubic 30.9892 0.1942 26.8588 0.4491 24.2972 0.4736 24.2566 0.5369
EDSRbic [Lim+17] 34.8349 0.0884 29.4590 0.2617 23.0932 0.3247 24.1839 0.4295
ESRGANbic [Wan+19b] — — 26.6828 0.1289 21.0068 0.3442 23.7343 0.3699
EDVRbic [Wan+19a] — — 30.7001 0.2025 22.0967 0.3266 23.7275 0.4276
LFSSRbic [Jin+20] 35.3224 0.0360 29.5067 0.2417 22.8422 0.3095 24.0424 0.4037

HQS DRUNet+
0...0.2 30.8832 0.1731 28.3765 0.3485 27.6333 0.2813 26.4208 0.3877

DRUGAN+
0...0.2 29.4760 0.1386 28.2575 0.3265 27.3270 0.2545 26.3081 0.3679

Table 4.6: Light field super-resolution results for the HCI [Hon+17] test
set. For blur downscaling four isotropic and four anisotropic Gaussian kernels
from [Zha+21a] were used.

because they cannot handle this form of downscaling. The results of our method
look much better. While the text was not reconstructed correctly, the images
look much smoother overall while preserving sharp edges. For the HQS algorithm,
bicubic downscaling was assumed. Given that the end-to-end frameworks failed
dramatically, this does not seem to be correct. However, the HQS algorithm still
produced much better results. The reason for this is the regularizer which forces
the output to be a plausible image even if the data term does not fit perfectly.

Table 4.6 shows the results for light field super-resolution. Only the center
image of the light field was upscaled. Again, EDSR and ESRGAN only had the
center image as an input. The input for EDVR consisted of every 11th image of
the light field resulting in 7 frames. LFSSR was trained on 7×7 light field frames.
Therefore, the outermost frames of the given 9 × 9 light field were cropped off.
The HQS algorithm had the whole 9× 9 light field as an input.

As for video super-resolution, HQS did not perform as well as end-to-end
learned methods for bicubic downscaling. Surprisingly, LFSSR, which was trained
explicitly for light field super-resolution and had almost the entire light field as
input, performed worse than EDVR and ESRGAN. ESRGAN achieved by far the
best LPIPS values. For downscaling with a blur kernel, the results are analog
to the results for video super-resolution. The end-to-end frameworks for bicubic
downscaling failed, and HQS performed much better. DRUGAN reached better
LPIPS values, while DRUNet was better in PSNR.

The quality of the depth estimation influences how well the HQS super-
resolution algorithm works. We ran super-resolution with ground truth disparities
and compared them to the results with estimated disparities to evaluate the in-
fluence. With ground-truth disparities of the “additional” light field of the HCI
dataset with bicubic downscaling and a scaling factor of 4, we got a mean PSNR
of 31.05 and an LPIPS of 0.3207. In contrast with estimated disparities, we got a
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(a) GT (b) Bicubic (c) EDSRbic [Lim+17] (d) ESRGANbic [Wan+19b]

(e) EDVRbic [Wan+19a] (f) LFSSRbic [Jin+20] (g) HQS-DRUNet (h) HQS-DRUGAN

Figure 4.7: Light field super-resolution results on the “Bedroom” image of the
HCI [Hon+17] test dataset. An isotropic Gaussian kernel and a scaling factor of
4 was used.
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mean PSNR of 30.40 and LPIPS of 0.3277. This shows that we could improve the
results by improving the disparity estimation. However, the differences are not
very drastic. The disparity estimation does not seem to be a handicap.

Figure 4.7 shows the results of upscaling the “Bedroom” image of the HCI
dataset. Blur downscaling was used. Some end-to-end learned methods show
visual artifacts—especially with the wall’s texture. This is expected because they
were not trained for the downscaling used. The HQS results do look slightly blurry
but introduce no visual artifacts.

4.5 Inpainting
See Figure 4.8 for inpainting results using the DMSP and HQS algorithm. The
“Border” method is a simple inpainting algorithm. The mean of all defined neigh-
bors is used for each undefined pixel next to at least one defined pixel. This
procedure is repeated until all pixels are defined.

For the DMSP and HQS algorithm, the image was initialized with the “Border”
inpainted image. This initialization makes it easy to reconstruct straight lines
because they are already present. If we look closely at the top two rows, we can
see that the DMSP and HQS algorithm failed to reconstruct details like the texture
on the table or the railing. The Pconv method, on the other hand, did a good job
reconstructing the texture of the table.

For the uncomplicated example in the bottom row, DMSP and HQS did a better
job. There is only one obvious mistake by the HQS algorithm at the woman’s
cheek. Otherwise, the text is not visible anymore in the image, and the areas are
filled reasonably well.

We can see that DMSP and HQS can not compete with state-of-the-art in-
painting methods. There could be several reasons for this. Many variables are
involved in the inpainting algorithms. The user has to choose the initialization
and the weighting of the prior in each step. We might not have discovered the
best settings. It is even more likely that the denoiser cannot reconstruct a texture
in one part of an image without any information but just based on the valid parts
of the image.
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(a) Masked (b) Border (c) Biharmonic [DH18] (d) Pconv [Liu+18]

(e) DMSP-DRUNet (f) DMSP-DRUGAN (g) HQS-DRUNet (h) HQS-DRUGAN

(i) Masked (j) Biharmonic [DH18] (k) DMSP-DRUGAN (l) HQS-DRUGAN

Figure 4.8: Inpainting results on two images. The Biharmonic result was ob-
tained using the scikit-image [Wal+14] implementation. The Pconv result was
obtained using the NVIDIA web app at https://www.nvidia.com/research/
inpainting/index.html.

https://www.nvidia.com/research/inpainting/index.html
https://www.nvidia.com/research/inpainting/index.html
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Conclusion

In this work, we have introduced a new Gaussian denoiser that was trained using
the GAN framework. Our denoiser, called DRUGAN, is based upon DRUNet
by Zhang et al. [Zha+21a] but trained with an additional perceptual loss and
an adversarial loss. It is a capable model that can handle a range of different
levels of Gaussian noise by using a noise level map input (like FFDNet [ZZZ18]).
DRUGAN achieves better than state-of-the-art denoising performance. We used
the LPIPS [Zha+18] metric to evaluate the visually perceived similarity between
the ground truth and the denoised image. No other denoiser known to us can
compete with DRUGAN on this metric. We provided visual examples showing
that DRUGAN better reconstructs texture and sharp edges and does not give
over-smooth results as other models do.

DRUGAN was used for two model-based methods for image reconstruction
on four distinct reconstruction tasks. We reproduced the deep mean-shift pri-
ors (DMSP) [Big+17] and implemented non-blind deblurring, single image super-
resolution, and inpainting. We implemented the same tasks for the half quadratic
splitting (HQS) algorithm [Zha+17b; Zha+21a]. Additionally, we implemented
the more complex task of multi-frame super-resolution for light fields and videos.
Both methods were evaluated using our DRUGAN denoiser. For non-blind deblur-
ring, we found that the HQS algorithm works very well using our denoiser, and we
beat every other method on the LPIPS metric. Also, the DMSP algorithm benefits
from the powerful denoiser and achieves the second-best results for most settings.
Again, we showed a visual example that confirms that for non-blind deblurring,
the DRUGAN denoiser has the same advantages as for denoising. Texture and
edges are reconstructed better than with other denoisers. These results show that
the DMSP algorithm profits from a more powerful denoiser even if it is not trained
with the MSE loss as the theory would require.

For single image super-resolution, our results are two-fold. When upscaling
images that were downscaled using the classical bicubic resizing, we can observe
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that our methods cannot compete with state-of-the-art end-to-end frameworks.
Additionally, the performance of the denoiser seems to play a minor role, and
DRUGAN cannot improve the results compared to other denoisers. However, the
primary advantage of model-based solutions is that they can be adapted easily to
slightly different tasks. We demonstrated this by evaluating single image super-
resolution using downscaling by a set of Gaussian blur kernels. Our methods
tackled the new task reasonably well while the end-to-end methods, trained to
handle bicubic downscaling, failed. Adapting the end-to-end frameworks would
require significantly more work because they would need to be retrained for every
slight change in the task (probably for every blur kernel). For single image super-
resolution with blur downscaling, the DRUGAN denoiser helps achieve results with
better perceptual quality than other denoisers.

Next, the more complex task of multi-frame super-resolution was implemented.
We used a simple iterative scheme to optimize the data term of the HQS algorithm
that relies on accurate registration between the individual images. The HQS al-
gorithm was used to upscale the center images of videos, where the registration
was done using an existing optical flow library. Our experiments show that our
method cannot compete with the state-of-the-art for bicubic downscaling. Even
methods that do not use multiple images outperform our model-based approach.
On the other hand, we demonstrated the same advantage as in the single image
super-resolution task. Our method can be adapted easily to work with other kinds
of downscaling and outperforms end-to-end learned methods that were not trained
to handle this case. Additionally, the center images of light fields were upscaled.
For light fields, the registration was done using a state-of-the-art method for dis-
parity estimation—LFattNet [Tsa+20]. The results do not differ much from the
results for videos. For all multi-frame super-resolution results, we showed that the
DRUGAN denoiser helps to improve the perceptual quality.

The last reconstruction task explored was image inpainting. We showed two
examples and can see that we cannot compete with state-of-the-art methods for
larger missing areas. This is not surprising because inpainting is a special problem
where realistic values must be generated without any valid data in a region. Most
likely, our DRUGAN denoiser cannot do this, but it would need a more thorough
exploration to be sure of the reason. For smaller areas, however, the prior using
DRUGAN does a pretty good job reconstructing edges and inpainting the region
realistically.

5.1 Future Work
Occlusions between frames could be considered to improve the method for multi-
frame super-resolution. Wanner and Goldlücke [WG12] did this for light field
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super-resolution, but it could also be adapted for video super-resolution. This
would require the registration algorithm to output the occlusions in the individ-
ual frames. Not taking occlusion into account causes the method to use wrong
information that hinders the algorithm from reaching full performance.

Currently, the method for deblurring assumes that the convolution was per-
formed using circular boundary conditions. This is easy to implement for both
algorithms but not very realistic in a practical use case. There are approaches to
prevent boundary artifacts for deconvolution [LJ08; KRS17]. Future work could
implement such an approach to apply the method to a wide range of blurred
images.

The method is easy to adapt to more image reconstruction tasks. We have al-
ready applied the method to non-blind deblurring and super-resolution. The degra-
dation model (blur kernel and noise level) must be known for both tasks. Bigdeli
et al. [Big+17] already used the deep mean-shift prior for noise- and kernel-blind
deblurring. This approach could be extended to upscale the image. Blind single
image super-resolution would be valuable for reconstructing noisy low-resolution
images from cameras.

Demosaicing is another classical and practically relevant image reconstruction
task that can be handled with our approach. The DURGAN denoiser could be a
valuable prior for sharp edges and a realistic texture.

Other than DMSP and HQS, the ADMM algorithm was used with a denoiser to
solve inverse reconstruction tasks [BRE16]. We could try our DRUGAN denoiser
with this algorithm and explore if it can achieve even better results than DMSP
or HQS.
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Appendix A

Additional Results

This Appendix shows an almost complete listing of the results of all conducted
experiments. All results and the evaluation code are available at

https://github.com/HedgehogCode/masters-thesis-evaluation.
In the following tables, the names of the metrics will be abbreviated by the

starting letter (PSNR: P, SSIM: S, FSIM: F, LPIPS: L). All metrics were com-
puted over all channels of the RGB color image.
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(a) GT (b) Noisy (c) DRUNet+
0...0.2 (d) DRUGAN+

0...0.2

Figure A.1: Denoising results on two images of each, the CBSD68 [Mar+] dataset, the Ko-
dak24 [Fra13] dataset, and the McMaster [Wu11] dataset. A noise standard deviation of σn = 0.35
was used.
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0.7894

0.7861
0.7756

0.7872
0.7900

0.7821
0.7907

F
0.9157

0.9620
—

0.9576
0.9581

0.9568
0.9518

0.9585
0.9595

0.9557
0.9587

L
0.4168

0.2650
—

0.3042
0.3152

0.3235
0.3619

0.3446
0.3215

0.3520
0.3131

s=4 P
24.75

26.62
24.34

25.98
26.01

25.92
25.87

25.92
25.87

25.82
25.82

S
0.6582

0.7367
0.6550

0.7133
0.7139

0.7102
0.7098

0.7119
0.7124

0.7085
0.7114

F
0.8671

0.9156
0.9346

0.9078
0.9084

0.9092
0.9093

0.9117
0.9118

0.9068
0.9073

L
0.5128

0.3448
0.1555

0.3968
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0.4169
0.4297

0.4336
0.4168

0.4280
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s=5 P
23.91

—
—

24.97
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24.89

24.91
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24.86
24.80

S
0.6080

—
—

0.6585
0.6591

0.6557
0.6551

0.6568
0.6560

0.6551
0.6555

F
0.8380

—
—

0.8616
0.8620

0.8625
0.8622

0.8657
0.8654

0.8582
0.8571

L
0.5838

—
—

0.4633
0.4742

0.4860
0.5006

0.5057
0.4918

0.4933
0.4793
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B
icubic

E
D
SR

b
ic

[L
im

+
17]

E
SR

G
A
N

b
ic

[W
an+

19b]
D
P
IR

[Z
ha+

21a]
D
M
SP

H
Q
S

D
C

N
N

0
.05

D
R

C
N

N
0

.05
D

U
N

et0
.05

D
R

U
N

et +0
.05

D
R

U
N

et +0
...0

.2
D

R
U

G
A

N
+0

...0
.2

D
R

U
N

et +0
...0

.2
D

R
U

G
A

N
+0

...0
.2

(a)
s=2P

28.31
28.44

—
34.53

34.65
34.77

34.28
32.99

34.43
34.18

34.60
33.28

L
0.1388

0.0580
—

0.0800
0.0534

0.0550
0.0562

0.0613
0.0503

0.0478
0.0731

0.0582

s=3P
24.77

23.13
—

30.08
30.28

30.49
29.74

27.84
30.19

29.72
30.43

30.05
L

0.2350
0.1423

—
0.1642

0.1164
0.1197

0.1209
0.1444

0.1102
0.1054

0.1575
0.1335

s=4P
22.67

20.30
16.94

26.61
27.22

27.39
27.05

25.32
27.48

25.83
27.74

27.05
L

0.3386
0.2430

0.3956
0.2277

0.1744
0.1774

0.1805
0.2210

0.1702
0.1646

0.2193
0.2017

(b)
s=2P

27.05
27.47

—
34.82

35.06
35.15

34.79
32.76

34.96
35.19

35.00
34.16

L
0.2385

0.1900
—

0.0873
0.0813

0.0830
0.0856

0.0910
0.0800

0.0684
0.0783

0.0580

s=3P
24.60

24.37
—

31.02
31.43

31.50
30.64

28.64
31.15

31.29
31.16

31.18
L

0.2834
0.1511

—
0.1703

0.1360
0.1386

0.1441
0.1612

0.1498
0.1341

0.1582
0.1356

s=4P
22.74

21.50
19.86

27.98
28.51

28.54
27.86

26.30
28.52

28.03
28.53

28.14
L

0.3490
0.1904

0.1814
0.2435

0.1921
0.1981

0.2065
0.2403

0.2138
0.2028

0.2254
0.2107

(c)
s=2P

25.94
26.13

—
34.20

33.67
33.72

33.36
30.81

33.88
34.39

34.44
34.02

L
0.3130

0.2919
—

0.1153
0.1271

0.1299
0.1341

0.1437
0.1252

0.1063
0.1033

0.0706

s=3P
24.25

24.41
—

31.15
31.64

31.76
30.90

28.74
31.33

31.66
31.29

31.46
L

0.3351
0.2512

—
0.1748

0.1484
0.1511

0.1574
0.1720

0.1640
0.1444

0.1611
0.1368

s=4P
22.68

22.29
21.77

28.41
29.03

29.01
28.31

26.59
28.89

28.57
28.84

28.56
L

0.3722
0.2125

0.1202
0.2471

0.2004
0.2062

0.2169
0.2456

0.2321
0.2196

0.2270
0.2121

(d)
s=2P

24.95
25.02

—
32.97

31.99
32.07

31.61
29.20

32.10
32.62

33.19
33.05

L
0.3693

0.3604
—

0.1513
0.1639

0.1674
0.1743

0.1894
0.1728

0.1481
0.1381

0.1070

s=3P
23.79

23.95
—

31.08
31.36

31.48
30.68

28.26
31.11

31.48
31.25

31.48
L

0.3819
0.3416

—
0.1847

0.1690
0.1724

0.1802
0.1987

0.1849
0.1613

0.1699
0.1441

s=4P
22.53

22.55
22.32

28.60
29.26

29.30
28.71

26.94
29.10

28.93
29.02

28.80
L

0.4018
0.3020

0.2546
0.2494

0.2050
0.2103

0.2222
0.2461

0.2389
0.2228

0.2279
0.2129

(e)
s=2P

24.70
24.76

—
32.36

31.41
31.53

31.02
28.97

31.56
31.88

32.59
32.32

L
0.3845

0.3754
—

0.1639
0.1724

0.1760
0.1839

0.1964
0.1844

0.1603
0.1489

0.1176

s=3P
23.62

23.71
—

30.94
30.80

30.93
30.15

27.97
30.67

30.92
31.09

31.25
L

0.3982
0.3573

—
0.1924

0.1831
0.1868

0.1959
0.2130

0.2005
0.1757

0.1777
0.1513

s=4P
22.45

22.39
22.15

28.56
29.08

29.14
28.29

26.78
28.95

28.73
29.01

28.86
L

0.4174
0.3320

0.2927
0.2492

0.2071
0.2119

0.2242
0.2512

0.2384
0.2212

0.2285
0.2126

(f)
s=2P

24.28
24.33

—
32.19

31.00
31.28

30.68
28.37

31.30
31.57

32.57
32.35

L
0.3838

0.3708
—

0.1543
0.1697

0.1688
0.1798

0.1923
0.1737

0.1517
0.1354

0.1051

s=3P
23.22

23.19
—

30.45
30.57

30.86
30.01

27.69
30.56

30.74
30.81

30.83
L

0.3947
0.3442

—
0.1962

0.1753
0.1742

0.1860
0.2030

0.1869
0.1675

0.1738
0.1494

s=4P
22.09

21.68
21.22

28.18
28.72

28.90
28.31

26.64
28.69

28.52
28.76

28.46
L

0.4184
0.3220

0.2555
0.2705

0.2140
0.2166

0.2321
0.2531

0.2466
0.2324

0.2369
0.2245

(g)
s=2P

24.75
24.86

—
32.74

31.52
31.66

31.19
29.15

31.95
32.18

33.03
32.76

L
0.3531

0.3343
—

0.1467
0.1576

0.1608
0.1652

0.1758
0.1555

0.1392
0.1320

0.1064

s=3P
23.77

24.07
—

30.76
30.94

31.10
30.39

28.17
30.95

31.08
31.01

31.05
L

0.3670
0.2951

—
0.1824

0.1639
0.1675

0.1724
0.1866

0.1703
0.1545

0.1661
0.1467

s=4P
22.63

22.73
22.25

28.26
28.88

28.90
28.38

26.78
28.74

28.46
28.83

28.57
L

0.3959
0.2697

0.2011
0.2488

0.2060
0.2113

0.2194
0.2411
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0.2155
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0.2450
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Bicubic EDSRbic [Lim+17] ESRGANbic
[Wan+19b]

EDVRbic
[Wan+19a]

HQS

DRUNet+
0...0.2 DRUGAN+

0...0.2

bi
cu
bi
c

s=
2

P 26.84 30.59 — — 27.68 27.05
S 0.8535 0.9263 — — 0.9042 0.9046
F 0.9648 0.9932 — — 0.9863 0.9856
L 0.2175 0.1036 — — 0.1847 0.1369

s=
3

P 23.74 25.79 — — 24.40 24.26
S 0.7084 0.8111 — — 0.7951 0.8077
F 0.8997 0.9612 — — 0.9556 0.9616
L 0.3995 0.2326 — — 0.3417 0.3005

s=
4

P 22.26 23.93 21.62 25.53 22.93 22.84
S 0.6028 0.7097 0.6006 0.7952 0.6942 0.7018
F 0.8364 0.9014 0.9256 0.9544 0.8993 0.9047
L 0.5066 0.3253 0.1903 0.2477 0.4030 0.3838

s=
5

P 21.31 — — — 21.92 21.83
S 0.5294 — — — 0.6151 0.6180
F 0.7983 — — — 0.8400 0.8414
L 0.5961 — — — 0.4705 0.4538

(a
)

s=
2 P 24.44 24.60 — — 24.06 23.07

L 0.2217 0.1009 — — 0.1824 0.1905

s=
3 P 21.31 19.39 — — 21.78 20.48

L 0.3919 0.2352 — — 0.2539 0.3062

s=
4 P 19.65 17.23 13.96 15.94 20.38 19.11

L 0.5010 0.3462 0.5088 0.3908 0.2910 0.3211

(b
)

s=
2 P 23.40 24.16 — — 24.25 23.93

L 0.3414 0.2942 — — 0.3015 0.2515

s=
3 P 21.49 21.24 — — 24.48 23.96

L 0.4220 0.2719 — — 0.2726 0.2062

s=
4 P 20.11 18.86 16.31 16.58 22.93 22.49

L 0.5095 0.3339 0.3558 0.3717 0.3460 0.2786

(c
)

s=
2 P 22.48 22.82 — — 22.43 22.29

L 0.4409 0.4155 — — 0.3925 0.3669

s=
3 P 21.28 21.44 — — 23.55 23.49

L 0.4806 0.3768 — — 0.3562 0.3161

s=
4 P 20.18 19.82 18.83 18.39 22.83 22.83

L 0.5387 0.3701 0.2307 0.3173 0.3805 0.3480

(d
)

s=
2 P 21.72 21.87 — — 21.16 21.07

L 0.5310 0.5146 — — 0.4562 0.4362

s=
3 P 20.96 21.21 — — 22.41 22.39

L 0.5486 0.4856 — — 0.4012 0.3798

s=
4 P 20.12 20.19 20.00 19.92 22.17 22.19

L 0.5804 0.4617 0.3771 0.3684 0.4076 0.3873

(e
)

s=
2 P 21.66 21.86 — — 21.57 21.49

L 0.5544 0.5386 — — 0.4582 0.4347

s=
3 P 20.88 21.04 — — 22.51 22.43

L 0.5796 0.5256 — — 0.4176 0.3852

s=
4 P 20.05 20.00 19.77 19.44 22.20 22.16

L 0.6085 0.5128 0.4450 0.5004 0.4267 0.3982

(f
)

s=
2 P 21.32 21.43 — — 20.79 20.67

L 0.5544 0.5338 — — 0.4606 0.4419

s=
3 P 20.60 20.60 — — 22.02 21.97

L 0.5684 0.5007 — — 0.3993 0.3716

s=
4 P 19.84 19.51 18.81 18.65 21.84 21.83

L 0.6001 0.4815 0.4077 0.4660 0.4095 0.3835

(g
)

s=
2 P 21.62 21.79 — — 20.91 20.79

L 0.5112 0.4906 — — 0.4428 0.4233

s=
3 P 20.98 21.34 — — 22.19 22.16

L 0.5283 0.4544 — — 0.3833 0.3574

s=
4 P 20.21 20.37 19.49 19.71 21.98 22.00

L 0.5694 0.4324 0.3637 0.4383 0.3917 0.3672

(h
)

s=
2 P 21.08 21.14 — — 20.25 20.19

L 0.6002 0.5917 — — 0.5109 0.4931

s=
3 P 20.61 20.78 — — 21.50 21.48

L 0.6091 0.5748 — — 0.4485 0.4306

s=
4 P 20.00 20.20 20.11 20.22 21.54 21.56
L 0.6251 0.5515 0.5084 0.5059 0.4469 0.4309

Table A.5: Video super-resolution results for Vid4 [LS11] with bicubic downscal-
ing and downscaling using the Gaussian kernels from Zhang et al. [Zha+21a]. The
metric was computed on the middle frame of the video.
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Bicubic EDSRbic
[Lim+17]

ESRGANbic
[Wan+19b]

EDVRbic
[Wan+19a]

LFSSRbic
[Jin+20]

HQS

DRUNet+
0...0.2 DRUGAN+

0...0.2

bi
cu
bi
c

s=
2

P 30.99 34.83 — — 35.32 30.88 29.48
S 0.8752 0.9259 — — 0.9468 0.9006 0.8993
F 0.9741 0.9956 — — 0.9961 0.9845 0.9817
L 0.1942 0.0884 — — 0.0360 0.1731 0.1386

s=
3

P 28.32 31.41 — — — 29.53 29.16
S 0.7889 0.8575 — — — 0.8390 0.8437
F 0.9265 0.9721 — — — 0.9570 0.9635
L 0.3452 0.1886 — — — 0.2697 0.2461

s=
4

P 26.86 29.46 26.68 30.70 29.51 28.38 28.26
S 0.7266 0.8017 0.7101 0.8519 0.8275 0.7844 0.7888
F 0.8813 0.9310 0.9455 0.9707 0.9595 0.9075 0.9162
L 0.4491 0.2617 0.1289 0.2025 0.2417 0.3485 0.3265

s=
5

P 25.84 — — — — 27.40 27.30
S 0.6814 — — — — 0.7419 0.7434
F 0.8513 — — — — 0.8675 0.8711
L 0.5310 — — — — 0.4148 0.3977

(a
)

s=
2 P 28.77 28.81 — — 28.34 26.73 25.60

L 0.2001 0.0895 — — 0.0823 0.2438 0.2272

s=
3 P 25.74 23.68 — — — 27.95 26.89

L 0.3347 0.2059 — — — 0.1646 0.1615

s=
4 P 24.01 21.35 16.83 20.54 21.29 28.66 27.92

L 0.4383 0.3105 0.5499 0.3468 0.3205 0.1440 0.1181

(b
)

s=
2 P 27.87 28.48 — — 28.48 26.50 25.01

L 0.3099 0.2603 — — 0.2321 0.3343 0.3169

s=
3 P 25.87 25.53 — — — 28.17 27.63

L 0.3749 0.2219 — — — 0.2752 0.2452

s=
4 P 24.38 22.77 19.92 21.07 22.31 27.68 27.41

L 0.4513 0.2777 0.3139 0.3422 0.3093 0.2761 0.2389

(c
)

s=
2 P 26.99 27.28 — — 27.27 25.89 24.75

L 0.4023 0.3786 — — 0.3709 0.3833 0.3713

s=
3 P 25.66 25.92 — — — 27.59 27.19

L 0.4354 0.3454 — — — 0.3373 0.3111

s=
4 P 24.44 23.84 23.03 22.66 23.53 27.37 27.24

L 0.4827 0.3027 0.1689 0.2928 0.2775 0.3306 0.3069

(d
)

s=
2 P 26.23 26.35 — — 26.35 25.18 24.64

L 0.4763 0.4660 — — 0.4624 0.4338 0.4246

s=
3 P 25.33 25.58 — — — 26.65 26.42

L 0.4950 0.4470 — — — 0.3853 0.3646

s=
4 P 24.37 24.41 24.26 24.11 24.24 26.82 26.73

L 0.5223 0.4078 0.3443 0.3247 0.3307 0.3743 0.3542

(e
)

s=
2 P 26.10 26.25 — — 26.24 24.97 24.05

L 0.4800 0.4665 — — 0.4623 0.4342 0.4212

s=
3 P 25.21 25.38 — — — 26.48 26.15

L 0.5033 0.4485 — — — 0.3870 0.3630

s=
4 P 24.28 24.06 23.87 23.27 23.84 26.54 26.44

L 0.5312 0.4254 0.3756 0.4756 0.4023 0.3797 0.3579

(f
)

s=
2 P 25.81 25.91 — — 25.90 24.65 24.05

L 0.4841 0.4687 — — 0.4648 0.4401 0.4291

s=
3 P 24.94 24.96 — — — 26.20 25.90

L 0.5026 0.4430 — — — 0.3902 0.3702

s=
4 P 24.07 23.65 23.06 22.83 23.44 26.42 26.30

L 0.5349 0.4125 0.3231 0.4230 0.3972 0.3839 0.3644

(g
)

s=
2 P 26.09 26.24 — — 26.24 24.79 24.23

L 0.4624 0.4442 — — 0.4388 0.4306 0.4246

s=
3 P 25.32 25.69 — — — 26.38 26.09

L 0.4831 0.4141 — — — 0.3770 0.3566

s=
4 P 24.45 24.58 23.68 24.37 24.50 26.63 26.51

L 0.5165 0.3812 0.2991 0.3392 0.3573 0.3661 0.3459

(h
)

s=
2 P 25.53 25.59 — — 25.59 24.39 24.00

L 0.5372 0.5326 — — 0.5304 0.4800 0.4742

s=
3 P 24.94 25.12 — — — 25.76 25.52

L 0.5497 0.5244 — — — 0.4312 0.4143

s=
4 P 24.23 24.44 24.33 24.44 24.40 26.09 25.99
L 0.5651 0.4988 0.4818 0.4726 0.4582 0.4211 0.4031

Table A.6: Light field super-resolution results for the HCI [Hon+17] test set with
bicubic downscaling and downscaling using the Gaussian kernels from Zhang et
al. [Zha+21a]. Only the center frame of the light field was upscaled.



75

(a
)
G
T

(b
)
B
ic
ub

ic
(c

)
E
D
SR

b
ic

[L
im

+
17
]

(d
)
E
SR

G
A
N

b
ic

[W
an

+
19
b]

(e
)
E
D
V
R

b
ic

[W
an

+
19
a]

(f
)
L
F
SS

R
b

ic
[J
in
+
20
]

(g
)
H
Q
S-
D
R
U
N
et

(h
)
H
Q
S-
D
R
U
G
A
N

F
ig
ur
e
A
.6
:
Li
gh

tfi
el
d
su
pe

r-
re
so
lu
tio

n
re
su
lts

on
th
e
lig

ht
fie
ld
so

ft
he

H
C
I[
H
on

+
17
]t
es
ts

et
.A

ll
ex
am

pl
es

us
e
a
sc
al
in
g
fa
ct
or

of
4.

T
he

fir
st

ex
am

pl
e

us
es

bi
cu
bi
c
do

w
ns
ca
lin

g,
w
hi
le

th
e
ot
he
r
ex
am

pl
es

us
e
bl
ur

do
w
ns
ca
lin

g
w
ith

iso
tr
op

ic
G
au

ss
ia
n
ke
rn
el
s
fro

m
[Z
ha

+
21
a]
.


	List of Figures
	List of Tables
	1 Introduction
	2 Related Work
	2.1 Image Priors
	2.2 Image Reconstruction
	2.2.1 Denoising
	2.2.2 Deblurring
	2.2.3 Single Image Super-Resolution
	2.2.4 Multi-Frame Super-Resolution
	2.2.5 Inpainting

	2.3 Generative Adversarial Networks

	3 Method
	3.1 Deep Mean-Shift Priors (DMSP)
	3.1.1 Prior Gradient

	3.2 Half Quadratic Splitting (HQS)
	3.3 Reconstruction Problems
	3.3.1 Deblurring
	3.3.2 Single Image Super-Resolution
	3.3.3 Multi-Frame Super-Resolution
	3.3.4 Inpainting

	3.4 Denoising GANs
	3.4.1 Denoising Autoencoder
	3.4.2 Generative Adversarial Networks


	4 Results
	4.1 Denoising
	4.2 Deblurring
	4.3 Single Image Super-Resolution
	4.4 Multi-Frame Super-Resolution
	4.5 Inpainting

	5 Conclusion
	5.1 Future Work

	Bibliography
	A Additional Results

