A Review of Recent Improvements of Generative Adversarial Networks

Progressive Growing of GANs

Benjamin Wilhelm

February 25, 2019

University of Konstanz

Figure 1: ...

Figure 1: People imagined by a numpy random number generator¹.

 $^{^1\}mathrm{Karras}$ et al., "Progressive Growing of GANs for Improved Quality, Stability, and Variation".

- 1. Introduction
- 2. Problems and Solutions

Variation of Generated Images High-Resolution Images Assessing Results

- 3. Evaluation
- 4. Conclusion

Introduction

Generative Adversarial Networks

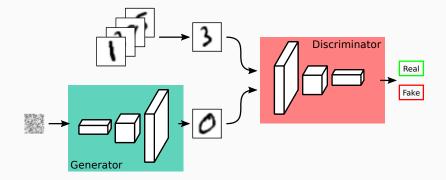


Figure 2: GAN framework²

 ${\tt https://medium.freecodecamp.org/an-intuitive-introduction-to-generative-adversarial-networks-gans-7a2264a81394}$

 $^{^2{\}rm Image}$ reference by Thalles Silva

Results from the Original Paper

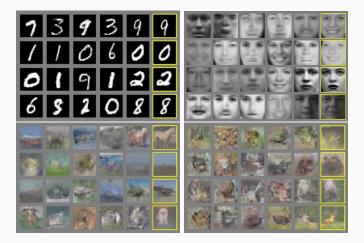


Figure 3: Results from the original GAN paper³.

³Goodfellow et al., "Generative adversarial nets".

Problems and Solutions

Variation of Generated Images

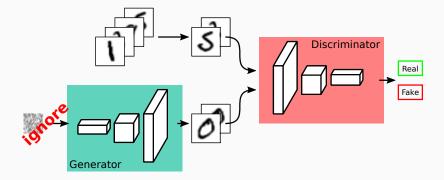
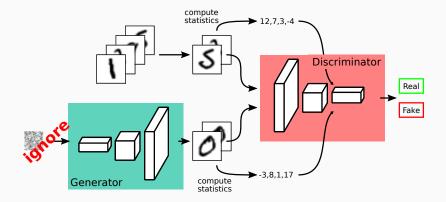



Figure 4: The latent vector can be ignored and only one good image generated.

Variation of Generated Images

Figure 5: Compute statistics over minibatch and make them available to the discriminator.

High-Resolution Images

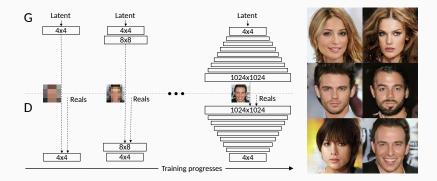


Figure 6: Progressive Growing⁴.

February 25, 2019

 $^{^4 {\}rm Karras}$ et al., "Progressive Growing of GANs for Improved Quality, Stability, and Variation".

High-Resolution Images

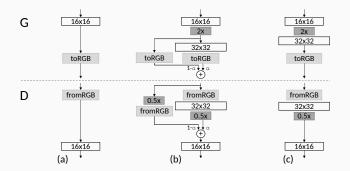


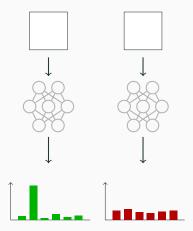
Figure 7: Fading in of new layers⁵.

 $^{^5 {\}rm Karras}$ et al., "Progressive Growing of GANs for Improved Quality, Stability, and Variation".

High-Resolution Images

Figure 8: Progressive Growing results⁶.

 $^{6}\mbox{Karras et al., "Progressive Growing of GANs for Improved Quality, Stability, and Variation".$

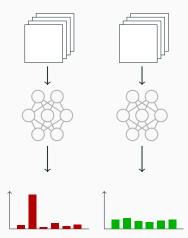

February 25, 2019

How good are the generated images?

Assessing Results

Option 1: Inception Score (IS)⁷

- If an Inception network gives a good prediction the images are realistic
- If it predicts all classes the variation is good



⁷Salimans et al., "Improved techniques for training gans".

Assessing Results

Option 1: Inception Score (IS)⁷

- If an Inception network gives a good prediction the images are realistic
- If it predicts all classes the variation is good

⁷Salimans et al., "Improved techniques for training gans".

Option 2: Fréchet Inception Distance (FID)⁸

- Improvement of the IS
- Use features by an intermediate layer
- Compute μ and Σ for real images and generated images
- Compares statistics

 $^{^{8}\}mbox{Heusel}$ et al., "Gans trained by a two time-scale update rule converge to a local nash equilibrium".

Option 3: Sliced Wasserstein Distance⁹

- Compute laplacian pyramids of real images and generated images
- Sample image patches on one level
- Compute the sliced Wasserstein distance between the patches

 $^{9}\mbox{Karras et al., "Progressive Growing of GANs for Improved Quality, Stability, and Variation".$

Evaluation

Original Results from the Paper

Figure 9: Progressive Growing results¹⁰.

 $^{10}\mbox{Karras et al., "Progressive Growing of GANs for Improved Quality, Stability, and Variation".$

February 25, 2019

Generated Images

Figure 10: Images generated with the source code and weights from the paper¹².

¹²https://github.com/tkarras/progressive_growing_of_gans

Figure 11: Images generated with the source code and weights from the paper.

Style-Based GANs

Figure 12: Generated images from the Style-Based GANs paper¹³.

 $^{13}\mbox{Karras}$ Laine, and Aila, "A Style-Based Generator Architecture for Generative Adversarial Networks".

February 25, 2019

Figure 13: Generated images from the Style-Based GANs paper.

Style-Based GANs

Figure 14: Images generated with the source code and weights from the Style-Based GANs paper¹⁵.

¹⁵http://stylegan.xyz/code

Style-Based GANs

Figure 15: Images generated with the source code and weights from the Style-Based GANs paper.

Conclusion

- General idea of GANs
- Problems and Solutions
 - Variation
 - High-resolution
 - Assessing of results
- Generated images

Questions?

References

Goodfellow, lan et al. "Generative adversarial nets". In: *Advances in neural information processing systems*. 2014, pp. 2672–2680.

- Heusel, Martin et al. "Gans trained by a two time-scale update rule converge to a local nash equilibrium". In: *Advances in Neural Information Processing Systems*. 2017, pp. 6626–6637.
- Karras, Tero, Samuli Laine, and Timo Aila. "A Style-Based Generator Architecture for Generative Adversarial Networks". In: *arXiv preprint arXiv:1812.04948* (2018).

Karras, Tero et al. "Progressive Growing of GANs for Improved Quality, Stability, and Variation". In: *International Conference on Learning Representations*. 2018. URL:

https://openreview.net/forum?id=Hk99zCeAb.

Salimans, Tim et al. "Improved techniques for training gans". In: Advances in Neural Information Processing Systems. 2016, pp. 2234–2242.

Progressive Growing of GANs: https://youtu.be/G06dEcZ-QTg Style-Based GANs: https://youtu.be/kSLJriaOumA

February 25, 2019